Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


quyenlan1250

Đăng ký: 26-12-2013
Offline Đăng nhập: 29-01-2015 - 15:56
-----

Bài viết của tôi gửi

Trong chủ đề: VMO 2015

18-01-2015 - 22:24

Lời gải bài 3 trước có nhầm lẫn mình đã gửi lời giải bài 3 và bài 7


Trong chủ đề: VMO 2015

18-01-2015 - 22:21

File gửi kèm  BINH LUAN DE THI VMO 2015.doc   201K   221 Số lần tải

Bình luận bài 3 và bài VMO 2015


Trong chủ đề: Tìm $k$ để tồn tại đường gâp khúc khép kín $n$ cạnh...

18-01-2015 - 20:57

K ở đây phải là giá trị lớn nhất chứ bạn


Trong chủ đề: Cho đường gâp khúc khép kín $n$ đoạn thẳng: Tìm $n$ đ...

18-01-2015 - 20:53

Cho đường gâp khúc khép kín $n$ đoạn thẳng:
Tìm $n$ để đường gâp khúc tự căt mỗi đoạn thẳng của mình tại $k$ điểm ($k$ cho trước)
Với mỗi $k$ và $n$ ,tìm số giao điểm.

Đề bài không rõ ràng cho lắm bạn có thể xem lại chính xác từng từ ngữ của đề


Trong chủ đề: có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau chia hết cho 6

18-01-2015 - 20:48

Các số lập được có dạng $\overline{abcdef}$

Xét $3$ trường hợp :

$1)$ Số lập được gồm các cs $1;2;3;4;5;6$

+ Chọn $f$ : $3$ cách (vì $f$ chẵn)

+ Sắp xếp $5$ cs còn lại : $5!=120$ cách.

$\Rightarrow$ TH 1 có $3.120=360$ số.

$2)$ Số lập được gồm các cs $0;1;2;3;4;5$

$a)$ Nếu $f=0$ : Có $5!=120$ số.

$b)$ Nếu $f$ khác $0$ :

+ Chọn $f$ : $2$ cách (vì $f$ chẵn)

+ Chọn vị trí cho cs $0$ : $4$ cách.

+ Sắp xếp $4$ cs còn lại : $4!=24$ cách.

$\Rightarrow$ TH 2 có $120+2.4.24=312$ số.

$3)$ Số lập được gồm các cs $0;1;2;4;5;6$

$a)$ Nếu $f=0$ : Có $5!=120$ số.

$b)$ Nếu $f$ khác $0$ :

+ Chọn $f$ : $3$ cách (vì $f$ chẵn)

+ Chọn vị trí cho cs $0$ : $4$ cách.

+ Sắp xếp $4$ cs còn lại : $4!=24$ cách.

$\Rightarrow$ TH 2 có $120+3.4.24=408$ số.

 

Vậy có $360+312+408=1080$ số thỏa mãn ĐK đề bài.

 

Các số lập được có dạng $\overline{abcdef}$

Xét $3$ trường hợp :

$1)$ Số lập được gồm các cs $1;2;3;4;5;6$

+ Chọn $f$ : $3$ cách (vì $f$ chẵn)

+ Sắp xếp $5$ cs còn lại : $5!=120$ cách.

$\Rightarrow$ TH 1 có $3.120=360$ số.

$2)$ Số lập được gồm các cs $0;1;2;3;4;5$

$a)$ Nếu $f=0$ : Có $5!=120$ số.

$b)$ Nếu $f$ khác $0$ :

+ Chọn $f$ : $2$ cách (vì $f$ chẵn)

+ Chọn vị trí cho cs $0$ : $4$ cách.

+ Sắp xếp $4$ cs còn lại : $4!=24$ cách.

$\Rightarrow$ TH 2 có $120+2.4.24=312$ số.

$3)$ Số lập được gồm các cs $0;1;2;4;5;6$

$a)$ Nếu $f=0$ : Có $5!=120$ số.

$b)$ Nếu $f$ khác $0$ :

+ Chọn $f$ : $3$ cách (vì $f$ chẵn)

+ Chọn vị trí cho cs $0$ : $4$ cách.

+ Sắp xếp $4$ cs còn lại : $4!=24$ cách.

$\Rightarrow$ TH 2 có $120+3.4.24=408$ số.

 

Vậy có $360+312+408=1080$ số thỏa mãn ĐK đề bài.

Bạn ah đề yêu cầu lập số chia hết cho 6 mà bạn, sao bạn chỉ tìm điều kiện để số đó là số chẵn