Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


congchuasaobang

Đăng ký: 11-01-2014
Offline Đăng nhập: 04-05-2015 - 20:05
*****

Bài viết của tôi gửi

Trong chủ đề: hợp số

08-11-2014 - 23:59

Bạn tách hằng đẳng thức ra. Đó là hợp số vì lúc đó nó có hai ước số khác 1 và khác chính nó nữa.

 

$ 15657 + 1000 = 16657 $

$ 15657 - 1000 = 14657 $

không phải, ý mình là từ đề bài làm sao để biến đổi thành $15657^{2}-1000^{2}$ í ??????


Trong chủ đề: hợp số

08-11-2014 - 23:30

Câu 1: 

$ 2 ^{10} + 5^{12} = 15657^2 - 1000^2$

Vì vậy nó là hợp số

bạn làm kĩ hơn được không??? mình không hiều


Trong chủ đề: Chứng minh định lí "Hình thang có 2 đường chéo bằng nhau là hình than...

21-07-2014 - 16:10

 

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang $ABCD (AB // CD)$ có $AC = BD$. Qua $B$ kẻ đường thẳng song song với $AC$, cắt đường thẳng $DC$ tại $E$. Chứng minh rằng: 
 
a) $BDE$ là tam giác cân. 
 
b) $\triangle ACD = \triangle BDC.$
 
c) Hình thang $ABCD$ là hình thang cân.

 

a, Ta có: BE song song AC ( theo bài ra)

               AB song song CE ( E thuộc CD)

       nên ABEC là hình bình hành, do đó AC=BE

               mà AC = BD

         nên BD=BE do đó BDE là tam giác cân

b, Ta có AC song song BE nên $\widehat{BEC}=\widehat{ACD}$

        mà $\widehat{BED}=\widehat{BDC}$ ( BDE là tam giác cân )

                       do đó  $\widehat{ACD}=\widehat{BDC}$

      Xét tg ACD và tg BDC có : $\widehat{ACD}=\widehat{BDC}$

                                                AC=BD( theo gt )

                                                BC là cạnh chung

        nên tg ACD =tg BDC ( c-g-c)

c, Theo chứng minh câu b, ta có: tg ACD= tg BDC

              do đó $\widehat{ADC}=\widehat{BCD}$

        Vậy ABCD là hình thang cân


Trong chủ đề: Đề thi toán(chuyên) tuyển sinh lớp 10 THPT chuyên Quốc Học 2014-2015

20-06-2014 - 19:01

Câu 1: Đặt ẩn $\frac{1}{x-1}=a$. $\frac{1}{y-2}=b$, $\frac{1}{z-3}=c$     với x khác 1, y khác 2, z khác 3

              Ta được hệ mới a+b+c=1

                                        $a^{2}-2bc=-1$

            Được (a,b,c)=(-1;1;1) nên (x.y.z)=(0;3;4)

 

Câu 2: Ta có $a^{2}(b+c)+b^2(c+a)+c^2(b+a)+2abc=0$

               hay (a+b)(b+c)(c+a)=0 thay các trường hợp vào phương trình thứ hai thì tương ứng với các trường hợp được c=1; a=1; b=1.  Thay lần lượt vào biểu thức cần cm thì ra


Trong chủ đề: Cho các số dương a,b,c biết: $\frac{a}{1+a}+\frac{b}{1+b}+...

19-06-2014 - 20:48

mọi người giúp bài này nữa luôn ạ 

   Cho 3 số thực dương a,b,c Chứng minh:

a, $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$

b, $\frac{a}{bc(c+a)}+\frac{b}{ca(a+b)}+\frac{c}{ab(b+c)}\geq \frac{27}{2(a+b+c)}$