Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


dogsteven

Đăng ký: 01-05-2014
Offline Đăng nhập: Riêng tư
****-

Bài viết của tôi gửi

Trong chủ đề: Đề Thi VMO năm 2017

05-01-2017 - 14:18

câu 1b là tìm tất cả a mà :/

Tất cả a đều thoả

Trong chủ đề: Đề Thi VMO năm 2017

05-01-2017 - 13:17

Câu b bài hình chứng minh BP và CQ đi qua trung điểm EF
Gọi AK là đường kính của (O) và W là trung điểm BC.
Tam giác RBC và tam giác RFE đồng dạng
R, W, K thẳng hàng. Gọi T là trung điểm EF
Từ đó biến đổi góc như sau FRT=BRW=KRB=SAB=FRS nên RS đí qua T

Trong chủ đề: Tuần 1 tháng 1/2017: Chứng minh đường thẳng chia đôi đoạn thẳng

02-01-2017 - 12:28

Ta có $\widehat{AKB} = 2\widehat{ADB}=\widehat{ALC}$ nên $\Delta AKB \sim \Delta ALC\Rightarrow \Delta AKL \sim \Delta ABC$

Ngoài ra $\widehat{OAL}=\widehat{BAD}$ nên $AO$ là trung tuyến của tam giác $AKL$

Ta có $\widehat{DAJ} = 90^o-\widehat{ADB}=\widehat{BAK}$ nên $AJ$ là đường đối trung của tam giác $AKL$

Hiện tại tiếp theo em chưa có hướng gì đẹp, em xin đi theo hướng này.

Gọi $E$ là trung điểm $BC$, $AE$ cắt $(O)$ lần thứ 2 tại $F$, trung trực $BC$ cắt $DF$ tại $R$. Chú ý rằng $O\in (AKL)$ nên $\dfrac{JP}{PO}=\dfrac{DR}{RF}$

$AD$ cắt $(O)$ tại $S$ và giao điểm tiếp tuyến tại $B, C$ của $(O)$ là $T$. Gọi $W$ là trung điểm $AS$

Áp dụng định lý Menelaus cho tam giác $ADF$ với cát tuyến $\overline{T, R, E}$, ta có:

$$\dfrac{DR}{RF}=\dfrac{EA}{EF}.\dfrac{TD}{TA}=\dfrac{AD.TD}{DS.TA}=\dfrac{TD}{TS}=\dfrac{AD}{AW}$$

Gọi $W'$ là đối xứng với $O$ qua $H$ thì $W'$ đối xứng với $W$ qua $A$ và ta có $\dfrac{JP}{PO}=\dfrac{AD}{AW'}$

Do đó theo bổ đề ERIQ ta suy ra trung điểm $ID, AP, OW'$ thẳng hàng nên $HQ$ chia đôi $AP$.


Trong chủ đề: Tuần 5 tháng 11/2016 : Mở rộng bài toán hình học trường đông tại Vinh năm...

30-11-2016 - 13:46

Em có ý tưởng sau, lúc nào rảnh em sẽ ghi đầy đủ lời giải.

Một tính chất cơ bản của đường đối trung cho ta bổ đề sau:

Bổ đề. Cho tam giác $ABC$. Tiếp tuyến tại $A$ của $(ABC)$ cắt $BC$ tại $Q$. $X, Y$ lần lược nằm trên trung trực $AC, AB$ sao cho $AY\perp AC, AX\perp AC$.

Khi đó $XY || OQ$

Từ đó dẫn đến ý tưởng chứng minh hai tam giác $AXY$ và $ANM$ là hai tam giác bằng nhau, thể hiện qua việc chứng minh đường thẳng qua $A$ vuông góc với $AB$ cắt $QK$ và $BY$ tại hai điểm mà đoạn thẳng nối chúng nhận $A$ làm trung điểm.


Trong chủ đề: ĐỀ THI CHỌN ĐT QG TỈNH HẢI PHÒNG NĂM 2016-2017

23-10-2016 - 10:46

Bài 4 ngày 1. Gọi $\{x_1, x_2,..., x_k\}$ là tập hợp các số thỏa mãn $2f(x_i)\geqslant x_i$

Khi đó tính được $S_f = 4\sum f(x_i)-2\sum x_i-\dfrac{3n(3n+1)}{2}$

Mà $\sum f(x_i)\leqslant 3n+(3n-1)+...+(3n-k+1)$ và $\sum x_i\geqslant 1+2+...+k$

Từ đó thay vào tính giá trị lớn nhất dễ dàng.