Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


I Am Gifted So Are You

Đăng ký: 04-05-2014
Offline Đăng nhập: 06-12-2014 - 13:00
***--

Bài viết của tôi gửi

Trong chủ đề: $A=(xyzt+1)(\sum \frac{1}{1+x^4})$

06-12-2014 - 12:55

 Câu 1 bạn chỉ cần dùng bổ đề tổng quát

$$ \frac{1}{x_{1}^{n}+1}+\frac{1}{x_{2}^{n}}+...+\frac{1}{x_{n}^{n}+1}\geq \frac{1}{x_{1}x_{2}...x_{n}+1} $$ với $x_{i}\geq 1 (i=1,2,...,n)$


Trong chủ đề: Tìm min: $y=\frac{2}{1-x}+\frac{1...

23-08-2014 - 15:10

$\frac{2}{1-x}+\frac{1}{x}=\frac{2}{1-x}-2+\frac{1}{x}-1+3=\frac{2x}{1-x}+\frac{1-x}{x}+3\geq 2\sqrt{2}+3$


Trong chủ đề: $\sum {xy} \ge 4\sum x - 9$

23-08-2014 - 13:51

$x^2+y^2+z^2=xyz\Leftrightarrow (\sum x)^2=2\sum xy+xyz\leq \frac{2}{3}(\sum x)^2+xyz\Rightarrow 3xyz\geq (\sum x)^2$
$\Rightarrow x+y+z\leq \sqrt{3xyz}\Rightarrow VP\leq 4\sqrt{3xyz}-9\Rightarrow VP^3\leq (4\sqrt{3xyz}-9)^3$

$\sum xy\geq 3\sqrt[3]{x^2y^2z^2}\Rightarrow (\sum xy)^3\geq 27x^2y^2z^2$
Ta cần cm

$27x^2y^2z^2\geq  (4\sqrt{3xyz}-9)^3$. Đặt $\sqrt{3xyz}=t$ thì $3t^4\geq (4t-9)^3$
Điều này luôn đúng với $t \geq 9$


Trong chủ đề: Chứng minh $\sum \sqrt{\frac{a^{2...

09-08-2014 - 14:28

Lâu ngày ko lên vmf :D

$$\sum \sqrt{\frac{a^2+2ab}{b^2+2c^2}}=\sum \frac{1}{\sqrt{\frac{b^2+2c^2}{a^2+2ab}}}\geq\sum\frac{2}{\frac{a^2+b^2+2c^2+2ab}{a^2+2ab}}\geq \sum\frac{a^2+2ab}{a^2+b^2+c^2}=\frac{1}{a^2+b^2+c^2}$$


Trong chủ đề: Dựng tam giác ABC biết chân ba đường cao là A1, B1, C1

30-07-2014 - 12:08

10460277_1512737918938864_73322988939549