Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


tuananh2000

Đăng ký: 21-05-2014
Offline Đăng nhập: 06-10-2018 - 15:53
*****

Bài viết của tôi gửi

Trong chủ đề: Nhận và khoe áo đồng phục của Diễn đàn.

22-07-2016 - 00:13

Em cũng nhận được áo rồi =)) áo đẹp lắm ạ  :like


Trong chủ đề: Kết quả TST 2016

05-04-2016 - 21:31

anh nguyenta98 ( Tạ Hà Nguyên ) rank bao nhiêu vậy mn ? :(


Trong chủ đề: Topic về phương trình và hệ phương trình

02-03-2016 - 04:29

ĐKXĐ: .....

Ta có pt (1) $\Leftrightarrow (5x^2+\frac{3}{2}x-3)-(3x+1)\sqrt{2x^2-1}=0$

$\Leftrightarrow 2(2x^2-1)-(3x+1)\sqrt{2x^2-1}+x^2+\frac{3}{2}x-1=0$

Đặt $\sqrt{2x^2-1}=a (a\geq 0)$ ta có:

$2a^2-(3x+1)a+x^2+\frac{3}{2}x-1=0$

$\Leftrightarrow (a-x+\frac{1}{2})(2a-x-2)=0$

Đến đây dễ rồi 

Từ dòng đỏ trên sao bạn có ý tưởng phân tích thành dòng đỏ dưới được vậy, mình vẫn chưa hiểu rõ cách suy luận của bài toán lắm  :icon6:


Trong chủ đề: Topic về phương trình và hệ phương trình

29-02-2016 - 20:29

Bài 299 : $\sqrt{(x+2)(2x-1)}-3\sqrt{x+6}=4-\sqrt{(x+6)(2x-1)}+3\sqrt{x+2}$

Bài 300 : $(3x+1)\sqrt{2x^{2}-1}=5x^{2}+\frac{3x}{2}-3$


Trong chủ đề: Topic về phương trình và hệ phương trình

13-02-2016 - 11:38

Bài 208 (trích từ bạn minhminh98 ) , mình không nhớ ở topic này có chưa nhưng thấy khá khó :

 

 $\left\{\begin{matrix}x^2y+x^2+1=2x\sqrt{x^2y+2} & \\ y^3(x^6-1)+3y(x^2-2)+3y^2+4=0 & \end{matrix}\right.$

Mình làm thử bài này thì thấy gặp vấn đề là 

1) Ở dữ kiện đầu có cho $x^2y+x^2+1=2x\sqrt{x^2y+2}$ sau khi xét các TH sẽ được $y=\frac{x^{2}\pm 2x-1}{x^{2}}$

2) Ở dữ kiện sau ta có thể phân tích nhân tử  $y^3(x^6-1)+3y(x^2-2)+3y^2+4=0$ thành $(x^2y-y+1) (x^4y^2+x^2y^2-x^2 y+y^2-2 y+4) = 0$ nhưng vì $x^4y^2+x^2y^2-x^2 y+y^2-2 y+4=0$ có nghiệm khá xấu nên mình cũng chưa biết xử lí như thế nào @@!