Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


ChinhLu

Đăng ký: 26-06-2014
Offline Đăng nhập: 23-05-2019 - 14:42
*****

Bài viết của tôi gửi

Trong chủ đề: Tìm tất cả các số tự nhiên n sao cho: $F_{(n)}(a,b,c)...

10-05-2016 - 11:57

Đề bài này có 1 thiếu sót quan trọng là không nói rõ $a,b,c$ thuộc tập số gì (số tự nhiên, số thực hay số phức).

Nếu $a,b,c$ thuộc tập số thực hay số phức thì phải định nghĩa thêm khái niệm chia hết cho số thực và số phức.Tưởng vấn đề cũng đơn giản : Một số chia hết cho 1 số thực (hay số phức) khi thương là số nguyên.

 

Mình hiểu chia hết ở đây là: đa thức P(x) chia hết cho đa thức Q(x) nếu P(x) =Q(x)R(x) với R cũng là một đa thức. Trong trường hợp này mình xét vành các đa thức hệ số phức, hoặc thực, hoặc nguyên (kiểu nào cũng được).  


Trong chủ đề: Tìm tất cả các số tự nhiên n sao cho: $F_{(n)}(a,b,c)...

10-05-2016 - 01:54

Tìm tất cả các số tự nhiên n sao cho:
Fn(a,b,c)=an(bc)+bn(ca)+cn(ab)(a2+b2+c2+ab+bc+ca)

Đặt $G(a,b,c) = a^2+b^2+c^2+ab+bc+ca$.  

 

Giả sử $F_n$ chia hết cho $G$. cho $c=0$ ta được $ab(a^{n-1}-b^{n-1})$ chia hết cho $a^2+b^2+c^2$. Từ đây dễ dàng suy ra được $n-1$ phải chia hết cho $3$. 

 

Nếu $n=1$ hoặc $n=4$  ta có thể chứng minh được $F_n$ chia hết cho $G$. Giả sử $n>4$ và ta viết $n-1=3k$ với $k>1$. Ta viết 

$$F_n=ab(a^{3k}-b^{3k}) +bc (b^{3k}-c^{3k}) +ca(c^{3k}-a^{3k}).$$

Vì $a^{3k}-b^{3k}$ chia hết cho $a^2+b^2+ab$ nên ta có 

$$ab(a^{3k}-b^{3k}) = ab\frac{a^{3k}-b^{3k}}{a^2+b^2+ab}G(a,b,c) -abc(a+b+c)\frac{a^{3k}-b^{3k}}{a^2+b^2+ab}.$$

Như vậy $F_n$ chia hết cho $G$ tương đương với $H_n$ chia hết cho $G$, với

$$H_n(a,b,c)= \frac{a^{3k}-b^{3k}}{a^2+b^2+ab}+\frac{b^{3k}-c^{3k}}{c^2+b^2+cb}+\frac{c^{3k}-a^{3k}}{a^2+c^2+ac}.$$

Cho $c=0, b=1$ và $a$ là một số phức khác $1$ sao cho $a^3=1$ (có 2 số phức như thế). Thay vào $H_n$ ta được $H_n(a,b,c)$ khác $0$ nhưng $G(a,b,c)=0$. Như vậy $H_n$ không chia hết cho $G$. 

 

Kết luận $n=1$ hoặc $n=4$. 


Trong chủ đề: Chứng minh $d$ chẵn.

13-01-2016 - 18:37

 

Cho $a,b,c,d\in \mathbb{Z}^+$ thỏa mãn:
$(a+bc)(b+ac)=5^d;a,b$ không chia hết cho 5.
Chứng minh $d$ chẵn.

Ta có thể viết $a+bc=5^m$ và $b+ac=5^n$ với $m,n$ là các số tự nhiên. Không mất tính tổng quát ta giả sử $m\geq n$. Từ hai phương trình vừa có ta suy ra được 

$$b(c^2-1)=5^n(5^{m-n}c-1).$$

Ta có hai trường hợp: 

 

TH1: $c=1$. Khi đó $m=n$ và $d$ là số chẵn. 

 

TH2: $c>1$. Do $b$ không chia hết cho $5$ nên ta phải có $c^2-1$ chia hết cho $5^n$. Từ đó

$$c\geq 5^n-1.$$

Như vậy ta phải có $a=1, b=1, c=5^n -1$. Suy ra $d$ là số chẵn. 


Trong chủ đề: $(n-1)^{n-1}\sum_{i=1}^n({x_i\pro...

11-01-2016 - 05:36

Để thuận tiện ta đặt 

$$S=\{x=(x_1,...,x_n)\in \mathbb{R}^n : 0\leq x_i\leq 1, \forall i ; \sum_{i=1}^n x_i=1\}$$
$$\mathbb{R}_+^n=\{(x_1,...,x_n)\in \mathbb{R}^n : x_i >0, \forall i\}.$$
Xét hàm số (nhiều biến) $F: \mathbb{R}^{n}\times \mathbb{R}^n \rightarrow \mathbb{R}$ cho bởi
$$F(x,a) = \left(\sum_{i=1}^n (1-x_i)a_i \right)^{n-1} - (n-1)^{n-1}\sum_{i=1}^n x_i\prod_{j\neq i}a_j,$$
với $x=(x_1,...,x_n)\in \mathbb{R}^n$, $a=(a_1,...,a_n)\in \mathbb{R}^n$.
Ta chứng minh bằng quy nạp theo $n$ rằng 
$$(*) \ \ \ F(x,a)\geq 0 , \forall x\in S,\  \forall a \in \mathbb{R}_+^n. $$
Ta kiểm tra được trường hợp $n=2$ (lúc này $F\equiv 0$). Giả sử rằng (*) là đúng với $n=2,3,...,k-1$. Ta chứng minh (*)  cho $n=k$. Cố định $a=(a_1,...,a_n)\in \mathbb{R}_+^n$. Chọn $(x_1,...,x_n)\in S$ sao cho giá trị nhỏ nhất của $F$ đạt được  tại $(x,a)$. Ta xét hai trường hợp sau:
 
 
  • TH1: Các số $a_i$ là đôi một khác nhau. Khi đó tồn tại $k < m$ sao cho 
$$(**) \ \ (n-1)\left(\sum_{i=1}^n (1-x_i)a_i \right)^{n-2} \neq  (n-1)^{n-1} \prod_{j\neq k, j\neq m} a_j.$$
Không mất tính tổng quát ta có thể giả sử $k=1,m=2$. Ta chứng minh rằng trong các số $x_i$ phải có ít nhất một số bằng $0$. Giả sử ngược lại, $x_i\in (0,1), \forall i$. Xét hàm số $f(t)= F(x(t),a)$ với $x(t)= (x_1+t,x_2-t,x_3,...,x_n)$. Để ý rằng với $t\in \mathbb{R}$ đủ nhỏ  thì $x(t) \in S$. Do $f(t)$ đạt cực tiểu tại $t=0$ nên ta có $f'(0)=0$. Nhưng do các số $a_i$ khác nhau đôi một nên theo (**) ta thấy rằng $f'(0)\neq 0$, mâu thuẫn. Vậy phải tồn tại $k$ sao cho $x_k=0$. Bây giờ ta viết 
 
$$F(x,a) = (a_k + X)^{n-1} - (n-1)^{n-1} a_k  \sum_{i\neq k} x_i \prod_{j\neq i,j\neq k} a_j,$$
 
với $$X=\sum_{i\neq k} (1-x_i)a_i.$$ Áp dụng giả thiết quy nạp ta có 
$$(n-2)^{n-2} \sum_{i\neq k} x_i \prod_{j\neq i,j\neq k} a_j \leq X^{n-2}.$$
Như vậy ta có 
 
$$F(x,a) \geq (a_k +X)^{n-1} -\frac{(n-1)^{n-1}}{(n-2)^{n-2}} a_k X^{n-2}.$$
 
Bây giờ áp dụng BDT AM-GM ta được $F(x,a)\geq 0$.
 
 
  • TH2:  Tồn tại $k\neq m$ sao cho $a_k=a_m$. Ta có thể giả sử $a_1=a_n$. Đặt $y_1=x_1+x_2, y_2=x_3,...,y_{n-1}=x_n$. Ta có thể viết lại $F(x,a)$ dưới dạng
 
$$ F(x,a) = (a_n + Y)^{n-1} - (n-1)^{n-1} a_n \sum_{i=1}^{n-1} y_i \prod_{j\neq i}^{n-1} a_j,$$
với $$Y= \sum_{i=1}^{n-1}(1-y_i)a_i.$$ Áp dụng giả thiết quy nạp và lập luận tương tự như trường hợp (1) ta được $F(x,a)\geq 0$. 
 

Trong chủ đề: Đề thi và lời giải VMO 2016

09-01-2016 - 21:28

Chỗ này em không hiểu lắm. Tại sao các cột còn lại có nhiều hơn $\frac m2 \frac n4$ cây xanh vậy ạ ?

 

Trong ô vuông mxn ta đã trích ra ô vuông con gồm n/2 cột và m hàng. Bây giờ xét ô vuông con gồm n/2 cột (sau khi đã loại đi n/2 cột vừa xét) và m/2 hàng. Lưu ý rằng theo cách chọn ra m/2 hàng vừa nêu thì trên mỗi hàng có ít nhất 3n/4 cây xanh. Ta đã lấy đi không quá n/2 cây xanh nên bây giờ còn lại nhiều hơn n/4 cây xanh. Có m/2 hàng như thế nên tổng cộng là nhiều hơn $\frac{m}{2}\frac{n}{4}$.