Đến nội dung

Oai Thanh Dao

Oai Thanh Dao

Đăng ký: 15-09-2014
Offline Đăng nhập: 17-12-2018 - 16:23
*****

Trong chủ đề: Định lý Đào

16-12-2018 - 14:19

Một số vấn đề về đường tròn Apollonian


Trong chủ đề: Hơn 40 tam giác đều họ tam giác đều mới được phát hiện

30-03-2018 - 20:51

Let $ABC$ be a triangle, let $A'B'C'$ be the Morley triangles (First Morely triangle, Second Morley triangle, or third Morley trianhle). Let $B_a$, $C_a$ on $BC$ such that  $ A'B_aC_a$ be an equilateral triangle define $C_b$, $A_b$, $A_c$, $B_c$ cyclically. Let $A''$, $B''$, $C''$ be the midpoints of $A_bA_c$, $B_cB_a$, $C_aC_b$ respectively. Then triangle $A''B''C''$ is equilateral triangle and perspective to $ABC$. $A''B''C''$ homothetic to the Morley triangle. 
 
Cho tam giác $ABC$ và $A'B'C'$ là tam giác Morley (tam giác Morley thứ nhất, thứ hai, hoặc thứ ba). Cho các điểm $B_a$, $C_a$ trên $BC$ sao cho $A'B_aC_a$ là tam giác đều. Định nghĩa $C_b$, $A_b$, $A_c$, $B_c$ tương tự. Gọi $A''$, $B''$, $C''$ gọi là trung điểm của $A_bA_c$, $B_cB_a$, $C_aC_b$ khi đó $A''B"C''$ là vị tự của tam giác Morley và thấu xạ với tam giác $ABC$.
 

Trong chủ đề: Chứng minh tồn tại một đường tròn tiếp xúc với hai đường tròn $(ABC)...

28-11-2017 - 20:04

Xét phép nghịch đảo tâm $A$ phương tích bất kì, ta chuyển bài toán đã cho về bài toán phụ:

Bài toán phụ. Cho tam giác $ABC,A_1$ là điểm bất kì $,B_1$ là điểm bất kì trên $BA_1,(BCB_1)$ cắt $A_1C$ ở $C_1.$ 

Chứng minh tiếp tuyến tại $A_1$ của $(AB_1C_1)$ song song với $BC.$

Bài toán phụ được chứng minh bằng cách gọi $A_1x$ là tiếp tuyến $(AB_1C_1)$ và có biến đổi góc 

$\widehat{xA_1C_1}= \widehat{A_1B_1C_1}= \widehat{A_1CB}$ suy ra đpcm.

Nhờ bạn vẽ hình lại cho mình được không? Bài toán phụ mình vẽ hình không thấy đúng. Cảm ơn bạn


Trong chủ đề: Một giả thuyết khác về tổng $A+B=C$

02-08-2017 - 11:58

Cảm nhận riêng của mình là câu hỏi cái này quá khó để biết đúng hay sai. Nếu nó đúng thì chẳng hạn, rõ ràng sẽ giảm việc chứng minh định lý Fermat về hữu hạn trường hợp và chứng minh phương trình $1+a^n=b^n$ vô nghiệm với $n>2$, nhưng việc chứng minh định lý Fermat đã rất rất khó rồi.

 

Mình nghĩ công việc do hạn chế tầm hiểu biết có ích hơn là cố gắng bác bỏ nó cho $N_0$ nào đó đủ nhỏ.

Cảm ơn bạn đã quan tâm, vì máy tính của mình có chạy đến hết một năm cũng chưa chắc kiểm chứng được với $A, B \le 4*10^18$ nên đành nêu ý tưởng vậy thôi chứ cũng chẳng chứng minh, hay kiểm chứng được. Nhưng có một nhà toán học dự định nó sẽ đúng nếu $N_0=4$ nhưng nó yếu hơn giả thuyết $abc$.


Trong chủ đề: Một giả thuyết khác về tổng $A+B=C$

24-07-2017 - 22:22

Mình xin được viết lại ý của tác giả, vì mình không hiểu được cho đến khi đọc lại 3 lần nên có thể cmt này sẽ có ích với người khác.

 

Với mọi $N \in \mathbb{Z}_{\geq 4}$, chỉ có hữu hạn bộ 3 số nguyên dương $A,B,C$ thỏa mãn: 

1. $A+B=C,$

2. $(A,B,C)=1,$

3. $l(A,B,C) \geq N.$

Ở đây, $l(A,B,C)=\min \left\{ord_{p}(ABC)| p \in Spec(\mathbb{Z}), p | ABC \right\}$.

 

Có chỗ mình không hiểu trong phiên bản tiếng Việt là câu "tồn tại một số hữu hạn các số", hi vọng tác giả có thể nói rõ ý của mình.

 

P/S: Nếu cách diễn giải của mình đúng, số $N$ trong giả thuyết là không cần thiết vì nếu giả thuyết đúng cho $N$ thì nó đúng cho mọi $M \geq N$. Như vậy, phát biểu chỉ nên là

 

Chỉ có hữu hạn bộ 3 số nguyên dương $A,B,C$ thỏa mãn: 

1. $A+B=C,$

2. $(A,B,C)=1,$

3. $l(A,B,C) \geq 4.$

Ở đây, $l(A,B,C)=\min \left\{ord_{p}(ABC)| p \in Spec(\mathbb{Z}), p | ABC \right\}$.

 

Cảm ơn bạn, dùng ký hiệu mình không thạo nhưng mình có thể phát biểu bằng lời ý tưởng của mình nhé:

 

Nếu ba số nguyên dương $(A, B, A+B)$ nguyên tố cùng nhau thì trong phân tích ra thừa số nguyên tố của ba số $A, B, A+B$ phải có một thừa số với số mũ nhỏ hơn $N_0$, trong đó $N_0$ là một giá trị khá nhỏ  $4, 5, 6....$.

 

PS: Phát biểu như này thì mình không lăn tăn gì cả