Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


halloffame

Đăng ký: 21-09-2014
Offline Đăng nhập: Hôm nay, 15:53
****-

Bài viết của tôi gửi

Trong chủ đề: Chứng minh rằng $T_{1}T_{2}, O_{1}O_...

15-04-2019 - 10:59

Do $BC$ là tiếp tuyến chung ngoài của $(O_1),(O_2)$ nên nếu gọi giao điểm của $BC,O_1O_2$ là $X$ thì $X$ là tâm vị tự ngoài của $(O_1),(O_2).$

Lại có $T_1$ là tâm vị tự $(O_1),(O)$ và $T_2$ tâm vị tự $(O_2),(O)$ nên ta cần phải chứng minh ba tâm vị tự ngoài của ba cặp đường tròn tạo từ bộ ba đường tròn $(O),(O_1),(O_2)$ thẳng hàng.

Đây chính là định lý Monge D'Alambert.


Trong chủ đề: Đa giác đều

22-03-2019 - 09:04

Bạn xem tại đây.


Trong chủ đề: Quĩ tích

02-03-2019 - 22:08

Bạn đăng vào box THPT hoặc Olympic nhé, đây là box giải đáp thắc mắc trong sử dụng diễn đàn chứ không phải giải toán.


Trong chủ đề: Ai có đề HSG lớp 10 không ạ?

26-02-2019 - 22:38

Bạn vào đây nhé.


Trong chủ đề: $S_{KAB}$ lớn nhất

23-02-2019 - 08:09

a) $\widehat{AMB}= \widehat{ANB}=90^0 \Rightarrow K,M,I,N$ cùng thuộc đường tròn đường kính $KI.$

b) $KA.KM=KN.KB$ và bằng phương tích của $K$ tới $(O).$

c) Gọi $O'$ tâm $(KAB)$ thì theo kết quả quen thuộc $KI=2OO'.$

Lại có $\widehat{MAN}= \frac{ \widehat{MON}}{2}= \frac{60^0}{2}=30^0 \Rightarrow \widehat{AO'B}=2 \widehat{AKB}=120^0.$

Do đó $\widehat{AO'O}=60^0 \Rightarrow OO'= \frac{AO}{ \sqrt{3}}= \frac{R}{ \sqrt{3}} \Rightarrow KI= \frac{2R}{ \sqrt{3}}.$

d) Theo câu c) thì $\widehat{AKB}=60^0 \Rightarrow (AKB)$ cố định.

Vậy $K$ di chuyển trên $(AKB)$ cố định, lại có $AB$ cố định nên $S_{KAB}$ lớn nhất khi $K$ là trung điểm cung lớn $AB$ của $(AKB).$

Khi đó hiển nhiên $M,N$ là giao điểm $BO',AO'$ với nửa đường tròn $(O).$