- Diễn đàn Toán học
- → Đang xem trang cá nhân: Bài viết: uahnbu29main
Chú ý
Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.
Thống kê
- Nhóm: Thành viên
- Bài viết: 25
- Lượt xem: 929
- Danh hiệu: Binh nhất
- Tuổi: Chưa nhập tuổi
- Ngày sinh: Chưa nhập ngày sinh
-
Giới tính
Nam
Công cụ người dùng
Lần ghé thăm cuối
Bài viết của tôi gửi
Trong chủ đề: Gpt :$\left ( x^{2} +x\right )\sqrt{2x...
15-04-2018 - 11:43
Trong chủ đề: Gpt :$\left ( x^{2} +x\right )\sqrt{2x...
15-04-2018 - 10:51
Phương trình có 1 nghiệm $\sqrt2$ (có thể solve bằng máy tính), thế vào $\sqrt{2x+3}$ ta được $\sqrt{2\sqrt2+3}=\sqrt{1+2\sqrt2+2}=1+\sqrt2$ nên trừ $\left(1+\sqrt2\right)\left(x^2+x\right)$ 2 vế rồi nhân liên hợp để xuất hiện nhân tử chung
Trong chủ đề: Gpt :$\left ( x^{2} +x\right )\sqrt{2x...
15-04-2018 - 10:37
$\\\left(x^2+x\right)\sqrt{2x+3}=x^3+3x^2+x-2\\\Leftrightarrow\left(x^2+x\right)\left(\sqrt{2x+3}-1-\sqrt2\right)=x^3+\left(2-\sqrt2\right)x^2-x\sqrt2-2\\\Leftrightarrow\frac{\left(x^2+x\right)\left(2x+3-3-2\sqrt2\right)}{1+\sqrt2+\sqrt{2x+3}}=\left(x-\sqrt2\right)\left(x^2+2x+\sqrt2\right)\\\Leftrightarrow x=\sqrt2\vee\frac{2x^2+2x}{1+\sqrt2+\sqrt{2x+3}}=x^2+2x+\sqrt2\\\Leftrightarrow x=\sqrt2$
Bời vì
$\\\frac{2x^2+2x}{1+\sqrt2+\sqrt{2x+3}}-x^2-2x-\sqrt2\\=\left(2x^2+2x\right)\left(\frac1{1+\sqrt2}-\frac1{1+\sqrt2+\sqrt{2x+3}}\right)+\left(3-2\sqrt2\right)x^2+\left(4-2\sqrt2\right)x+\sqrt2>0\forall x\geq-\frac32$
Bạn có thể tham khảo thêm phương pháp truy ngược biểu thức nhân liên hợp để tránh phải đánh giá phương trình phức tạp phía sau
Trong chủ đề: y=$\frac{x^{2}}{8}$ ; y=...
11-02-2018 - 19:00
a)$S=\int_0^3\left(x^2-\frac{x^2}{8}\right)dx+\int_3^6\left(\frac{27}{x}-\frac{x^2}{8}\right)dx$
b)$\\x^2=\frac{2}{x}\Leftrightarrow x=\sqrt[3]{2}\\\frac{x^2}{4}=\frac{8}{x}\Leftrightarrow x=2\sqrt[3]{4}\\S=\int_{\sqrt[3]{2}}^2 \left(x^2-\frac{2}{x}\right)dx+\int_2^{2\sqrt[3]{4}}\left(\frac{8}{x}-\frac{x^2}{4}\right)dx$
c) (Chỉ có 2 đường, không cần vẽ hình)
$\\4-\frac{9x^2}{4}=\frac{81x^4}{32}\Leftrightarrow x=\pm\frac{2\sqrt2}{3}\\S=\left|\int_{-\frac{2\sqrt2}{3}}^\frac{2\sqrt2}{3}\left(\sqrt{4-\frac{9x^2}{4}}-\frac{9x^2}{4\sqrt2}\right)dx\right|=\left|S'\right|$
Đặt $x=\frac{4}{3}\sin t\Leftrightarrow dx=\frac{4}{3}\cos t\,dt$
$S'=\int_{-\frac{\pi}{4}}^\frac{\pi}{4}\sqrt{4-4\sin^2t}\cdot\frac{4}{3}\cos t\,dt-\frac{3x^3}{4\sqrt2}\left|\begin{matrix}\frac{2\sqrt2}{3}\\-\frac{2\sqrt2}{3}\end{matrix}\right.=\frac{4}{3}\int_{-\frac{\pi}{4}}^\frac{\pi}{4}2\cos^2t\,dt-\frac{8}{9}=\frac{4}{3}\int_{-\frac{\pi}{4}}^\frac{\pi}{4}(1+\cos2t)dt-\frac{8}{9}=\frac{4}{3}\left(x+\frac{1}{2}\sin2t\right)\left|\begin{matrix}\frac{\pi}{4}\\-\frac{\pi}{4}\end{matrix}\right.-\frac{8}{9}=\frac{4}{9}+\frac{2\pi}{3}=S$
Trong chủ đề: Diện tích hình phẳng
11-02-2018 - 17:52
1)$S=\int_0^1\left(\sqrt{4x}-2x^2\right)dx=\left(\frac{4}{3}x^\frac{3}{2}-\frac{2}{3}x^3\right)\left|\begin{matrix}1\\0\end{matrix}\right.$
2)$S=\int_0^1(2^x-1)dx+\int_1^2(3-x-1)dx=\left[\frac{2^x}{\ln(2)}-x\right]\left|\begin{matrix}1\\0\end{matrix}\right.+\left(2x-\frac{x^2}{2}\right)\left|\begin{matrix}2\\1\end{matrix}\right.$
3)$\\(d):y=kx+4\\(d)\cap Ox=\left(0,\frac{-4}{k}\right)\\S_1=S_2\\\Leftrightarrow S_1=\frac{1}{2}(S_1+S_2)\\\Leftrightarrow\frac{1}{2}\cdot4\cdot\frac{-4}{k}=\frac{1}{2}\int_0^2(x-2)^2dx\\\Leftrightarrow\frac{-8}{k}=\frac{4}{3}\\\Leftrightarrow k=-6$

- Diễn đàn Toán học
- → Đang xem trang cá nhân: Bài viết: uahnbu29main
- Privacy Policy
- Nội quy Diễn đàn Toán học ·