Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


chatditvit

Đăng ký: 04-01-2015
Offline Đăng nhập: 17-07-2016 - 09:18
-----

#629935 Tìm tất cả các số nguyên tố p và các số nguyên dương x,y thỏa mãn: $...

Gửi bởi chatditvit trong 27-04-2016 - 22:33

Tìm tất cả các số nguyên tố p và các số nguyên dương x,y thỏa mãn: $\frac{x^3y}{x+y}=p$




#629499 CMR: $\sum \frac{a}{1+bc}\leq \s...

Gửi bởi chatditvit trong 25-04-2016 - 13:35

Cho a,b,c>0 thỏa mãn $a^2+b^2+c^2=1$. CMR: $\sum \frac{a}{1+bc}\leq \sqrt{2}$




#556608 Tính $\widehat{BOC}$

Gửi bởi chatditvit trong 27-04-2015 - 18:38

1.Kẻ BH vuông góc với AC. Cần chứng minh: BH=HO. Đặt CH=x(cm). $\Delta CHB\sim CBA$. Từ đó tính được HO=HB=2x(cm)

$\rightarrow \widehat{BOC}=45^{o}$

2. Ta có: $\frac{AM}{AC}=\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}=\frac{AC}{NC}$

$\rightarrow \Delta ANC\sim \Delta MCA(c.g.c)\rightarrow 60^{o}=\widehat{ACK}+\widehat{NCK}=\widehat{ANC}+\widehat{NCK}=\widehat{AKC} \rightarrow \widehat{AKC}=60^{o}$




#554739 Giải hệ phương trình x+y+z=6

Gửi bởi chatditvit trong 17-04-2015 - 22:39

Ta có:

8=$\sqrt{1-x^2}+\sqrt{16-y^2}+\sqrt{25-z^2}\leq \sqrt{(1+4+5)^2-(x+y+z)^2}=\sqrt{10^2-6^2}=8$

Dấu đẳng thức xảy ra $\Leftrightarrow \frac{x}{1}=\frac{y}{4}=\frac{z}{5}=\frac{3}{5} \Leftrightarrow x=\frac{3}{5};y=\frac{12}{5};z=3$




#546481 $\frac{a}{(a+1)(b+1)}+\frac{b}...

Gửi bởi chatditvit trong 26-02-2015 - 23:30

Đặt $a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}.$

$\rightarrow VT=\sum \frac{\frac{x}{y}}{\frac{x+y}{y}.\frac{y+z}{z}}=\sum \frac{xz}{(x+y)(y+z)}=\sum \frac{x^2z^2}{xz(x+y)(y+z)}\geq \frac{(\sum xz)^2}{3xyz(\sum x)+\sum x^2z^2}=\frac{(\sum xz)^2}{(\sum xz)^2+xyz(\sum x)}\geq \frac{\left ( \sum xz \right )^2}{(\sum xz)^2+\frac{\left ( \sum xz \right )^2}{3}}=\frac{3}{4}$

Dấu $"= "$ xảy ra khi $a=b=c=1$




#546418 $(\frac{x}{y+z})^2\geq \frac{27x...

Gửi bởi chatditvit trong 26-02-2015 - 21:15

Ta có: $x+y+z=\frac{1}{2}[x+(y+z)+(y+z)]\geq \frac{3}{2}.\sqrt[3]{2x(y+z)^2} \rightarrow \frac{27x^3}{4(x+y+z)^3}\leq \frac{x^2}{(y+z)^2}\rightarrow Q.E.D$




#546255 $\sum \frac{1+a^2}{1+b+c^2}\geq 2$

Gửi bởi chatditvit trong 26-02-2015 - 06:52

$VT\geq \sum \frac{1+a^2}{1+\frac{b^2+1}{2}+c^2}=\sum \frac{2(1+a^2)}{b^2+2c^2+3}$

Đặt: $1+a^2=x; 1+b^2=y; 1+c^2=z$

$\rightarrow$$VT\geq \sum \frac{2x}{2z+y}.$ $\rightarrow \frac{1}{2}VT\geq \sum \frac{x}{2z+y}=\sum \frac{x^2}{2xz+xy}\geq \frac{(x+y+z)^{2}}{3(xy+yz+xz)}\geq 1$ $\rightarrow VT\geq 2\rightarrow Q.E.D$




#544165 AP là phân giác góc BPD

Gửi bởi chatditvit trong 14-02-2015 - 19:39

Cách 1: Kẻ AH, AK $\perp$ với BN và DM.
Ta có: $S(ADM)=S(ABN)=\frac{1}{2}S(ABCD)$. Mà $DM= BN$ $\rightarrow$ $AK=AH$ 
$\rightarrow$ PA là phân giác $\widehat{BPD}$ $\rightarrow$ $Q.E.D$
Cách 2: Kẻ BP, AP kéo dài cắt BC, AD tại E, F.
Ta có: $\frac{PD}{PF}=\frac{PM}{BP}=\frac{DM}{BF}=\frac{BN}{BF}=\frac{AD}{AF}. \rightarrow$ PA là phân giác ngoài $\widehat{DPF}$ ( tính chất đường phân giác ngoài tam giác ).
$\rightarrow$ PA là phân giác $\widehat{BPD}$

$\rightarrow Q.E.D.$




#543596 Chứng minh S(ADM)=S(CEM)

Gửi bởi chatditvit trong 09-02-2015 - 22:46

$\Leftrightarrow \frac{DM}{CM}=\frac{CE}{CK}.\frac{CK}{CA}=\frac{CD}{BC}.\frac{CA-BA}{CA}=\frac{CD}{BC}.(1-\frac{BA}{CA})=\frac{CD}{BC}.(1-\frac{BD}{CD})=\frac{CD}{BC}.\frac{CD-BD}{CD}=\frac{CD-BD}{BC}=\frac{2MD}{2MC}=\frac{MD}{MC} \Leftrightarrow Q.E.D$