Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


vda2000

Đăng ký: 09-01-2015
Offline Đăng nhập: Hôm nay, 11:54
****-

Bài viết của tôi gửi

Trong chủ đề: Tuần $4$ tháng $9/2017$: $AP$ đi qua điểm c...

27-09-2017 - 14:39

Lời giải bài 1 của em: 

Như trên hình, em chỉ xét những điểm liên quan đến $N$.

Gọi $S, D$ lần lượt là điểm chính giữa cung $ABC, BC$ của $(O)$. Gọi $V$ là trung điểm $AC$ và $SE$ cắt $DF$ tại $U$. Gọi $AI$ cắt $BC$ tại $G$. Gọi $J$ là trung điểm của $AI$

Bằng cách định nghĩa ta dễ có: $N\in AS$

File gửi kèm  abc.jpg   58.92K   5 Số lần tải

Nhận xét 1: $NQ$ vuông góc $AC$.

Chứng minh: Điều này tương đương với $NQ//SV$ hay theo định lý Ta-lét, ta cần chứng minh:

$\frac{AN}{AS}=\frac{AQ}{AV}$. Do: $\frac{AQ}{AV}=\frac{AI}{AG}$ dựa trên $JQ//AC$ và $J,V$ lần lượt là trung điểm của $AI,AC$.

Do đó, ta cần chứng minh: $\frac{AN}{AS}=\frac{AI}{AG}\Leftrightarrow\frac{NA}{NS}=\frac{IA}{IG}$, luôn đúng.

Do

 

Nhận xét 2: $AP$ là đường đối trung trong tam giác $\Delta RAQ$.

Ta chứng minh điều này dựa vào định lý Ceva-sin.

Ta tính được: $\frac{\text{sin}\widehat{LQR}}{\text{sin}\widehat{LQA}}=\text{cos}(\frac{A}{2}).\frac{\text{cos}(\frac{C}{2})}{\text{sin}(\frac{B}{2})}$ $(1)$

Thiết lập, tương tự, ta có: $\frac{\text{sin}\widehat{KRA}}{\text{sin}\widehat{KRQ}}=1:\text{cos}(\frac{A}{2}).\frac{\text{sin}(\frac{C}{2})}{\text{cos}(\frac{B}{2})}$.

Nhân lại, sử dụng định lý sin và định lý Ceva-sin, ta có ngay:

$\frac{\text{sin}\widehat{RAP}}{\text{sin}\widehat{QAP}}=\frac{\text{sin}\widehat{AQR}}{\text{sin}\widehat{ARQ}}$, đủ để suy ra nhận xét.

 

Do đó, ta chứng minh $(1)$.

 

Cuối cùng, vì $AP$ là đường đối trung tam giác $RAQ$ nên cũng là đối trung tam giác $ABC$ nên đi qua điểm cố định là giao hai tiếp tuyến tại $B,C$ của $(O)$. $\blacksquare$


Trong chủ đề: Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

21-09-2017 - 07:31

Bài 2. 

Dễ thấy $P(x)=(x^3-3)Q(x)+2017$

Đặt $Q(x)=a_{n} x^n+a_{n-1} x^{n-1}+...+a_0$ 

$P(x)=a_{n} x^{n+3}+a_{n-1} x^{n+2} +a_{n-2} x^{n+1} +( a_{n-3}-3a_{n} ) x^n+(a_{n-4}-3a_{n-1}) x^{n-1}+...+(a_{0}-3a_{3})x^3-3a_{2} x^2 -3a_{1} x +2017 - 3a_{0}$

Do $P(x)$ có hệ số không âm nên ta phải có hệ
$$\left\{\begin{matrix} a_{n},a_{n-1},a_{n-2} \geq 0\\ a_{n-3} \geq 3a_{n}\geq 0\\ ...\\ a_{0} \geq 3 a_{3} \geq 0\\ a_1 ,a_2 \leq 0\\ a_0 \leq \dfrac{2017}{3}\\ \end{matrix}\right.$$

Cho ta các nghiệm nguyên không âm $a_{n}=a_{n-1}=...=a_{1}=0$ hay $Q(x)=a_0=c \leq 672$ là hàm hằng. 

$P(1)=c+2017-3c=2017-2c \geq 673$

Dấu "=" xảy ra khi $P(x)=672 x^3 +1$

$P(x)=1+2x^6+2x^9+2x^{15}+2x^{18}$ $P(\sqrt[3]{3})=2017, P(1)=9<674$


Trong chủ đề: Tuần 3 tháng 8/2017: $PQ$ chia đôi $CD$

16-08-2017 - 17:27

Một cách tiếp cận khác: Xét phép nghịch đảo cực $R$, phương tích bất kỳ (bản chất chắc nó cũng không quá khác so với 2 lời giải trên), khi đó, ta có bài toán như hình vẽ:

 

Cho $4$ điểm $B,C,E,F$ thuộc một đường tròn $(O)$, $BE,CF$ cắt nhau tại $R$. $(RFB),(REC)$ cắt nhau tại $A$ (Chú ý, từ điều kiện này và tính chất $3$ trục đẳng phương, suy ra: $BF,CE$ đồng quy tại $K$). $M,N$ thuộc $(O)$ sao cho $2$ tiếp tuyến tại $2$ điểm này với $(O)$ cùng song song với $RK$.

Chứng minh rằng: $(RFM), (REN)$ cắt nhau trên $RK$ (Điều kiện này cũng tương đương với $MF,NE$ cắt nhau tại $S$ thì $S$ thuộc $KR$).

Tóm lại, ta phải chỉ ra: $S$ thuộc $KR$.

Vì $2$ tiếp tuyến tại $M,N$ với $(O)$ song song với $RK$, nên theo định lý Brokard, suy ra: $EF,MN,BC$ đồng quy tại $T$.

Gọi $FN,ME$ cắt nhau tại $J$ thì $J$ thuộc đường thẳng cực của $T$, nên: $K,J,R$ thẳng hàng.

Cuối cùng, lại theo định lý Brokard một lần nữa, vì: $OT\bot SJ, KR$ nên $S$ thuộc $KR$. $\blacksquare$

 

 


Trong chủ đề: BMO 2017

07-05-2017 - 09:18

Bài 3:

Theo em biết thì nước ngoài hiểu $\mathbb{N}={1,2,...}$

Giả sử một hàm $f$ thỏa mãn đề bài.

Ta có: $n+f(m)|f(n)+nf(m)$ nên: $n+f(m)|f(n)-n^2$ $(1)$ và: $n+f(m)|f(n)-[f(m)]^2$ $(2)$

Giả sử rằng $f(m)$ chỉ nhận hữu hạn giá trị trên $\mathbb{N}$

Khi đó, tồn tại tập $A={n_1,n_2,...}$ có vô hạn phần tử, được sắp thứ tự tăng dần sao cho: $f(n_1)=f(n_2)=...=a$

Thay $m=n_1, n=n_i$, suy ra:

$n_i+a|a-a^2$. Theo cách định nghĩa của ta, cho $i\rightarrow +\infty$ thì $n_i\rightarrow +\infty$, suy ra:

$a-a^2=0$, vì xét hàm trên $\mathbb{N}$ suy ra: $a=1$

Cố định $m_0$ trong $(2)$, thay $n=n_i$, suy ra:

$n_i+f(m_0)|1-[f(m_0)]^2$

Một lần nữa, cho $i\rightarrow +\infty$, $n_i\rightarrow +\infty$, dẫn đến: $f(m_0)=1$, từ đó suy ra: $f(x)=1$, với mọi $x\in\mathbb{N}$

Trường hợp tập giá trị của $f(m)$ không bị chặn, làm giống bạn @Minhnksc


Trong chủ đề: Đề Thi VMO năm 2017

05-01-2017 - 14:28

Tất cả a đều thoả

thực chất $a\geq\frac{-1}{10}$ để $u_2$ xác định nữa