Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


ecchi123

Đăng ký: 04-02-2015
Offline Đăng nhập: 18-10-2018 - 17:10
*****

#704140 Tuần $2$ tháng $9/2017$: Chứng minh $\frac...

Gửi bởi ecchi123 trong 23-03-2018 - 17:31

Anh có thể giải thích cho e đoạn \widehat{LAM}-\widehat{KAM}=\widehat{AQP}-\widehat{ANM} được không? Vì sao hai hiệu này bằng nhau ạ?

$ \widehat{LAM}-\widehat{KAM}=(90-\widehat{ANM})-(90-\widehat{AQP})$




#696731 Tuần 3 tháng 11/2017: tâm ngoại tiếp tam giác $AEF$ nằm trên $...

Gửi bởi ecchi123 trong 17-11-2017 - 16:32

Lời giải bài 2 :

Ta có $SN.SB=SM.SA$ nên $MN$ song song $BA$ nên $ST$ đi qua trung điểm $AB$

Gọi $PQ,PB$ cắt $AB,AQ$ tại $E,F$ . $DC$ cắt $PQ,AB,EF$ tại $X,Y,Z$

Ta có $(SZXY)=E(SFBQ)=-1$ nên $TZ$ song song $AB$

Mặt khác $EF$ là đối cực của $S$ qua $(O)$ nên $(DCSZ)=-1$ => $T(UVSZ)=-1$ nên $TS$ cũng đi qua trung điểm $VU$ nên $AU=BV$

s.png




#696730 Tuần 3 tháng 11/2017: tâm ngoại tiếp tam giác $AEF$ nằm trên $...

Gửi bởi ecchi123 trong 17-11-2017 - 16:14

Lời giải bài 1 :Gọi tiếp tuyến tại $B,C$ của $(O)$ cắt nhau tại $L$ ,$AL$ cắt $(O)$  tại $T$ , đpcm tương đương $AT\perp QE <=>\widehat{OQE}=\widehat{MAT} $

Gọi $PQ$ cắt $AB$ tại $N$  có $\widehat{PNB}=\widehat{AOP}=\widehat{BOP}$ nên $NOBP$ nội tiếp nên $\widehat{BAC}=\widehat{OPB}=\widehat{ONB}=>ON\parallel AC$

Gọi $(OTL)$ cắt $BT$ tại $H$ , Ta có $\widehat{LOH}=\widehat{ACB}=\widehat{QNE} ,\widehat{LBH}=\widehat{MAC}=\widehat{QOE}$ và $\Delta ONE \sim \Delta BOL$ nên 2 hình $ONQE,BOHL$ đồng dạng với nhau $=>\widehat{OQE}=\widehat{THL}=\widehat{TOM}=\widehat{TAM}$ dpcm

 
qư.png



#695204 Đề thi chọn đội tuyển Học sinh giỏi môn Toán tỉnh Bình Thuận năm 2017 - 2018

Gửi bởi ecchi123 trong 22-10-2017 - 07:19

Bài 3 :

Ta có $EF,AB,AC$ là các tiếp tuyến của $(ICB)$ nên $BM,CN$ là các đường đối trung tam giác $IBC$

 Gọi $Q,X,Y$ là trung điểm của $CN,IB,IC$ . $CX,BY$ cắt $(IBC)$ tại $Z,T$ . ta có $\widehat{TZX}=\widehat{TBC}=\widehat{XYB}$ nên $XYZT$ nội tiếp , nên $\widehat{XZY}=\widehat{XTY}$

Mặt khác ta có $\Delta CBN\sim \Delta CZI=>\Delta CBQ\sim \Delta CZY=>\widehat{CBQ}=\widehat{CZY}=\widehat{XTB}=\widehat{PCB}$ (Do chứng minh tương tự với $P$ ) nên $CP,BQ$ cắt nhau tại $K$ trên trung trực $BC$

aq.png




#695040 Chứng minh cách dựng đường tròn tiếp xúc với 2 đường tròn cho trước

Gửi bởi ecchi123 trong 18-10-2017 - 20:43

Lời giải :

-Gọi $L$ là tiếp điểm của $(O),(O')$, $N$ là trung điểm $AB$ . $E$ là hình của của $O$ xuống $BO'$ , Ta có $\frac{HA}{HB}=\frac{FE}{FO'}=\frac{\sqrt{RR'}-R'}{R-\sqrt{RR'}}=\frac{\sqrt{R}}{\sqrt{R'}}$ và $\frac{LA}{LB}=\frac{\sqrt{R}}{\sqrt{R'}}$ ( Do hình chiếu của $L$ xuống $AB$ là đường đối trung tam giác $LAB$ ) Từ đó có $LH$ là phân giác góc $ALB$

-Gọi $J,G$ lần lượt là điểm đối xứng với $H$ qua $I,K$ Ta có $HJ.HG=HM.HI=HA.HB$ nên $\Delta AHG \sim \Delta JHB$ nên $J$ là trực tâm tam giác $ABG$

- Gọi $OO'$ cắt $AB$ tại $X$ . Dễ thấy $XL$ tiếp xúc với $(LAB)$ mà $LH$ là phân giác góc $ALB$ nên $XL=XH$

- Gọi $H'$ đối xứng với $H$ qua $X$ Mà $XH^2=XA.XB$ nên $(HH'AB)=-1$ nên $HN.HH'=HA.HB=HJ.HG$ nên  $J$ là trực tâm tam giác $GNH'$ nên $GJ\perp H'G =>GJ\perp XK$ . mà $NL\perp XK$ nên $N,L,J$ thẳng hàng nên $JL\perp XK$ .mà $XH=XL$ Suy ra $JL=JH$

- Gọi $(I,IH)$ cắt $AJ$ tại $P$  nên $JL^2=JH^2=JP.JA$ nên $(APL)$ tiếp xúc với $LJ$ nên $P$ thuộc $(O)$

Hơn nữa $\widehat{PHJ}+\widehat{PAL}=\widehat{HAL}=\widehat{JPL}$ , Gọi  $Px$ là tiếp tuyển của $(O)$ nên $\widehat{xPJ}=\widehat{PHJ}$ nên $(I)$ cũng tiếp xúc với $Px$ Nên $(I)$ tiếp xúc với $(O)$ , tương tự ta cũng có $(I)$ tiếp xúc với $(O')$

Ustitled.png




#694475 Tuần $2/10$ năm $2017$: Tâm $(PBC)$ nằm trên...

Gửi bởi ecchi123 trong 09-10-2017 - 20:13

 Lời giải bài 1 :

 Ta có $\widehat{JKL}=90-\widehat{A}/2=\widehat{KPL}$ nên $JK,JL$ là tiếp tuyến của $(IKL)$  nên $IKPL$ điều hòa

Đường thẳng qua $B$ song song với $DL$ cắt $IC$ tại $M$ . Ta có $\frac{PK}{PL}=\frac{IK}{IL}=\frac{BK}{BD}.\frac{CD}{CL}=\frac{BK}{ML}$ nên $\Delta PLM \sim \Delta PKB$ nên $\widehat{LMP}=\widehat{KBP}$ nên $IMBP$ nội tiếp $=>\widehat{IPB}=180-\widehat{BMC}=180-\widehat{DLC}=90-\widehat{A}/4$ . Tượng tự thì $\widehat{IPC}=90-\widehat{A}/4$ suy ra $\widehat{BXC}=\widehat{A}$  nên $X$ thuộc $(O)$

q.png




#694277 Đề thi chọn đội tuyển học sinh giỏi lớp 12 năm học 2017-2018 - Tỉnh Bà Rịa -...

Gửi bởi ecchi123 trong 06-10-2017 - 17:36

 Câu 1 :

a ) Đặt $a=2cosA,b=2cosB,c=2cosC$ => $cos^2A+cos^2B+cos^2C+2cosA.cosB.cosC=1$ nên $A,B,C$ là 3 đỉnh của tam giác nhọn

 ta có bdt quen thuộc $cosA+cosB+cosC \leq 3/2 $ nên $a+b+c \leq 3$

  ta  chứng minh $a+b+c \geq \sqrt{abc}+2 <=> 2(cosA+cosB+cosC) \geq \sqrt{8cosA.cosB.cosC}+2 <=>4.sinA/2.sinB/2.sinC/2\geq \sqrt{2cosA.cosB.cosC}<=>(1-cosA)(a-cosB)(1-cosC)\geq cosA.cosB.cosC$

Mặt khác ta lại có $(1+cosA)(1+cosB)(1+cosC)\leq (\frac{3+3/2}{3})^3=27/8$

 nên việc còn lại là cm $(1-cos^2A)(1-cos^2B)(1-cos^2C)\geq \frac{27}{8}cosA.cosB.cosC<=>\frac{cotA.cotB.cotC}{sinA.sinB.sinC}\leq 8/27 <=>\prod cotC.(cotA+cotB)\leq 8/27$ ( do $sin^2A=\frac{1}{1+cot^2A}$ và $\sum cotA.cotB=1$)

điều này đúng do

$VT=\prod (cotA.cotC+cotB.cotC)\leq \frac{8}{27}(\sum cotA.cotB)^3=\frac{8}{27}$

 vậy $a+b+c \geq \sqrt{abc}+2 <=> (a+b+c-2)^2 +a^2+b^2+c^2  \geq 4 <=>a^2+b^2+c^2+ab+ac+bc  \geq 2(a+b+c)<=>(a+b+c)^2 \geq ac+ab+cb+2(a+b+c)$ 

 

ta có $\sum \frac{a}{\sqrt{(b+2)(c+2)}}\geq \frac{(a+b+c)^2}{\sum a\sqrt{(b+2)(c+2)}}\geq \frac{(a+b+c)^2}{ab+bc+ca+2a+2b+2c}\geq  1$




#694270 Đề thi chọn đội tuyển học sinh giỏi lớp 12 năm học 2017-2018 - Tỉnh Bà Rịa -...

Gửi bởi ecchi123 trong 06-10-2017 - 13:50

Câu 5 :

a) $T\equiv f(1)+f(3)+...+f(2017)( mod 2)$ vậy nên số các số lẻ trong $f(1),f(3),...,f(2017)$ phaỉ lẻ

 nên số các cách chọn $f(1),f(3),...,f(2017)$ là $1009! .(C_{1009}^1.C_{1009}^{1008}+C_{1009}^3.C_{1009}^{1006}+C_{1009}^5.C_{1009}^{1004}+....+C_{1009}^{2007}.C_{1009}^{2})$

 

Mà.$(C_{1009}^1.C_{1009}^{1008}+C_{1009}^3.C_{1009}^{1006}+C_{1009}^5.C_{1009}^{1004}+....+C_{1009}^{2007}.C_{1009}^{2})=\frac{\sum_{i=0}^{1009}C_{1009}^i.C_{1009}^{1009-i}-2.C_{1009}^0.C_{1009}^{1009}}{2}=\frac{C_{2018}^{1009}-2}{2}$

Còn lại số cách chọn $f(2),...,f(2018)$ là $1009!$

Vậy tổng số hoán vị là $(1009!)^2 . (\frac{C_{2018}^{1009}-2}{2})$

 
 



#694262 Đề thi chọn đội tuyển học sinh giỏi lớp 12 năm học 2017-2018 - Tỉnh Bà Rịa -...

Gửi bởi ecchi123 trong 06-10-2017 - 11:30

Bài 2 :

a)xét $f_n(x)=\sum_{i=1}^{n}\frac{1}{i(x+i)}-1$ => $f'_n(x)=\sum_{i=1}^{n}\frac{-1}{i(x+i)^2} <0 $ nên $f_n$ nghịch biến

$\lim_{x\rightarrow +\propto } f_n(x) =-1$ . $f_n(0) >0$ nên pt có nghiệm duy nhất thuộc $(0, + \propto )$

b)$f_n(1)=\sum_{i=1}^{n}\frac{1}{i(1+i)}-1=-\frac{1}{n+1} <0=f_n(x_n)$ nên $x_n <1$ do $f$ nghịch biến

Mặt khác $f'_n(x)=\sum_{i=1}^{n}\frac{-1}{i(x+i)^2} <-1/4 \forall 1>x>0$ 

Theo định lí lagrange thì tồn tại $c$ thuộc $(x_n,1)$ sao cho $\frac{f_n(x_n)-f_n(1)}{x_n-1}=f'_n(c)<-1/4 => 0<1-x_n<\frac{4}{n+1}$

=> $lim x_n=1$




#694252 Đề thi chọn đội tuyển học sinh giỏi lớp 12 năm học 2017-2018 - Tỉnh Bà Rịa -...

Gửi bởi ecchi123 trong 06-10-2017 - 07:46

Bài 4 :

a) $f(3)=f^2(2)+1 , f(4).f(2)=f^2(3)+1=f^4(2)+2f^2(2)+2 => f(2) |2$

 TH1 : $f(2)=1 . f(n+1)=\frac{f^2(n)+1}{f(n-1)}$ . quy nạp ta được $f(n+1)=3f(n)-f(n-1)$

 TH2  :$f(2)=2. f(n+1)=\frac{f^2(n)+1}{f(n-1)}$ . quy nạp ta cũng được $f(n+1)=3f(n)-f(n-1)$

Vậy có 2 hàm thỏa mãn 

b)đặt $g(x)=f(x)-x $ => $g(g(x)+x+x^2+y)=g(y)$ (1)

- $g(x)=-x-x^2 \forall x$ thỏa mãn

- tồn tại $c$ sao cho $f(c)+c+c^2=a \neq 0$ => $g(y+a)=g(y)$

thay $x$ bởi $x+a$=> $g(g(x)+x+x^2+y+2ax+1+a)=g(y)=g(g(x)+x+x^2+y)$

tiếp tục thay $y$ bởi $-x-x^2-g(x)$ => $g(2ax+1+a)=g(0)$

 vậy $g(x)=b$ ( $b$ thực )

 có 2 hàm $f(x)=-x^2$ và $f(x)=x+c$ thỏa mãn 




#694026 Tuần 1 tháng 10/2017: $MH$ và đường thẳng qua $D$ song so...

Gửi bởi ecchi123 trong 01-10-2017 - 18:18

Lời giải bài 1 

Gọi $HM$ cắt $(O)$ tại $J$ , Ta cm $DJ$ song song $PE$ tương đương với cm $OM$ đi qua trung điểm $PE$

Áp dụng menelaus cho tam giác $HAJ$ với cát tuyến $ODP$ nên 

$\frac{PH}{PJ}=\frac{DH}{DA}=\frac{EJ}{EA}$  nên theo ERIQ thì trung điểm $PE,HJ,AJ$ thẳng hàng nên $OM$ đi qua trung điểm $PE$ .  dpcm

tha.png




#693577 CMR $(u-1)\vdots 3$

Gửi bởi ecchi123 trong 23-09-2017 - 18:17

Lời giải : ,  $n=2k+1$ nên với mọi $p$ là số nguyên tố lẻ mà $p|3^{2k+1}+1 | 3^{2k+2}+3$

 đặt $3^{k+1}=2a+1$ nên $(2a+1)^2+3=4(a^2+a+1)\equiv 0 $(mod $p$)  dó $p$ lẻ nên $p | a^2+a+1 |a^3-1 $ do $p$ ko chia hết $a-1$ ( nếu ngược lại thì $p=3$ vô lí ) nên $ord_p(a)=3$ mặt khác theo fermat thì $p|a^{p-1}-1$ nên $3|p-1$ . Vậy thì $u=p_1^{\alpha _1}.... p_k^{\alpha _k}\equiv 1(mod 3)$




#693226 Chứng minh $MN \perp OP$

Gửi bởi ecchi123 trong 17-09-2017 - 18:08

Cho tam giác $ABC$ nội tiếp $(O)$, $I$ là trung điểm cạnh $BC$. Phân giác trong $AD$  ($D$ trên cạnh $BC$),hai điểm $P,Q$ trên cạnh $AD$ thoả mãn $\angle CBP=\angle ABQ$. $M$ là hình chiếu của $Q$ trên $BC$, $N$ đối xứng với $I$ qua $AD$. Chứng minh $MN \perp OP$

 


$AD$ cắt $(O),NI$ tại $X,Y$ . $OX$ cắt $(O)$ tại $Z$

 Có $QMYI$ nọi tiếp nên ta có $\Delta XIQ \sim \Delta IYM$

Mặt khác $(BPQ)$ tiếp xức $BX$ nên $XP.XQ=BX^2=XI.XZ$ nên $\Delta XPZ \sim \Delta XIQ \sim \Delta IYM$ => $\Delta XPO \sim \Delta INM$

nên $OP$ vuông góc $MN$

PSW.png




#693078 Đề chọn Đội tuyển HSGQG tỉnh Hòa Bình năm 2017-2018

Gửi bởi ecchi123 trong 15-09-2017 - 12:01

Câu 1 : Cho dãy số $( x_n )$ thỏa mãn $x_1 = 2 , x_{n+1}=\frac{2x_n+1}{x_n+2}$

Xác định HSTQ Của $x_n$ và tìm $lim x_n$

 

Câu 2 : Cho đường tròn tâm $O$ đường kính $AB$ . Một điểm $H$ thuộc đoạn $AB$ . Đường thẳng qua $H$ vuông góc với $AB$ cắt $(O)$ tại $C$ . Đường tròn đường kính $CH$ cắt $AC,CB,(O)$ tại $D,E,F$

 

a) Chứng minh rằng $AB,DE,CF$ đồng quy

 

b) Đường tròn tâm $C$ bán kính $CH$ cắt $(O)$ tại $P,Q$

Chứng minh rằng $P,Q,D,E$ thẳng hàng

 

Câu 3

a) Tìm tất cả các đa thức $P(x)$ hệ số thực thỏa mãn đồng nhất thức :

$x.P(x-1)=(x-3).P(x)$

 

b) Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn:

$f(xy)+f(x)+f(y)=f(x)f(y)+f(x+y)$  $\forall x,y\in \mathbb{R}$

 

Câu 4 :Cho $a,b,c$ là 3 số nguyên thỏa mãn $a+b+c=a^2.(c-b)+b^2.(a-c)+c^2(b-a)$ 

Chứng minh rằng $a+b+c$ chia hết cho 27

 

Câu 5 : Cho tập $M$ gồm 2017 số dương $a_1;a_2;...;a_{2017}$ . Xét tất cả các tập con $T_i$ khác rỗng của $M$. Gọi $s_i$ là tổng các số thuộc tập $T_i$ nói trên . Chứng minh rằng có thể chia tập hợp tất cả các số $s_i$ được thành lập như vậy thành 2017 tập hợp con khác rỗng không giao nhau sao cho tỷ số của 2 số bất kì thuộc còng một tập hợp con vừa được thân chia không quá 2




#692824 Tuần $2$ tháng $9/2017$: Chứng minh $\frac...

Gửi bởi ecchi123 trong 10-09-2017 - 23:09

Lời giải bài 2 :

(Chứng minh Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ : $l$ cắt $AB,AC$ tại $M,N$  . Đường thẳng qua $M,N$ vuông góc với $AC,AB$ cắt $BY,CZ$ tại $Y',Z'$ . $X'$ là trực tâm tam giác $AMN$ . Đường thẳng qua $X',Y',Z'$ vuông góc với $CB,CA,AB$ đồng quy tại $X'$ . Hơn nữa $X',Y',Z'$ chia $AD,BE,CF$ cùng 1 tỷ số nên Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ nằm trên đường nối trực tâm 2 tam giác $ABC,AMN$)

 

 

Giả sử $(CZK)$ cắt $(ABC)$ tại $L$ .Ta có $(LB,LK)=(LB,LC)+(LC,LK)=(AB,AC)+(ZC,ZK)=(AM,AN)+(MN,MA)=(MN,AN)=(YB,YK) (mod \pi)$ nên $(LBYK)$ nội tiếp . Tương tự thì $(LAXK)$ nt , Vậy 3 đường tròn đó đồng quy tại $K,L$ . Mặt khác $KL$ cắt $(O)$ tại $H$ thì $(OH,OB)=2(LK,LB)=2(AC,l) (mod \pi)$ cố định nên $H$ cố định 

1234.png