Đến nội dung

tritanngo99

tritanngo99

Đăng ký: 06-04-2015
Offline Đăng nhập: 12-03-2024 - 08:02
****-

#744085 Chứng minh rằng:$S_{m+n}+S_{m-n}=S_{m}.S_...

Gửi bởi tritanngo99 trong 11-03-2024 - 08:39

Mình xin trình bày lời giải bài này như sau:

Ta có: $(\sqrt{2}+1)(\sqrt{2}-1)=1\implies \sqrt{2}-1=\frac{1}{\sqrt{2}+1}$

Do đó: $S_{k}=(\sqrt{2}+1)^{k}+\frac{1}{(\sqrt{2}+1)^{k}}$

Từ đây, bắt đầu tính toán $S_{m+n}+S_{m-n}$ và $S_m.S_n$, thu được kết quả như sau:

+ $S_{m+n}.S_{m-n} =(\sqrt{2}+1)^{m+n}+\frac{1}{(\sqrt{2}+1)^{m+n}}+\frac{(\sqrt{2}+1)^{m}}{(\sqrt{2}+1)^{n}}+\frac{(\sqrt{2}+1)^{n}}{(\sqrt{2}+1)^{m}} (I)$

 

+ $S_m.S_n =(\sqrt{2}+1)^{m+n}+\frac{1}{(\sqrt{2}+1)^{m+n}}+\frac{(\sqrt{2}+1)^{m}}{(\sqrt{2}+1)^{n}}+\frac{(\sqrt{2}+1)^{n}}{(\sqrt{2}+1)^{m}} (II)$

 

Từ (I) và (II) ta thu được điều phải chứng minh




#731366 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 29-10-2021 - 06:04

Bài 13: [IMO 1987] Cho $n$ là một số nguyên dương. Với mỗi số nguyên không âm $k$, kí hiệu $p_n(k)$ là số các hoán vị của tập hợp $\left\{1,2,...,n\right\}$, mà có đúng $k$ điểm cố định. Chứng minh rằng: $\sum\limits_{k=0}^{n}k*p_n(k)=n!$

 

Chú ý. Một hoán vị $f$ của tập hợp $S$ là một song ánh đi từ $S$ vào $S$. Một phần tử $i\in S$ được gọi là điểm cố định của hoán vị $f$ nếu như $f(i)=i$




#731354 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 28-10-2021 - 07:17

Bài  12: [IMO 2004] Trong tứ giác lồi $ABCD$ đường chéo $BD$ của nó không phải là phân giác của góc $\angle{ABC}$ và $\angle{CDA}$. Một điểm $P$ nằm trong tứ giác $ABCD$ và thoả mãn: $\angle{PBC}=\angle{DBA}$ và $\angle{PDC}$ và $\angle{BDA}$.

 

Chứng minh rằng $ABCD$ là một tứ giác nội tiếp khi và chỉ khi $AP=CP$.




#731340 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 27-10-2021 - 07:30

Bài 11: [IMO 1990] Tìm tất cả hàm $f:\mathbb{Q}^{+}\rightarrow \mathbb{Q}^{+}$ thoả : $f(xf(y))=\frac{f(x)}{y},\forall x,y\in \mathbb{Q}^{+}$




#731320 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 26-10-2021 - 06:57

Bài 10: [IMO 1966] Cho $a,b,c$ là độ dài ba cạnh của một tam giác, còn $\alpha, \beta, \gamma$ tương ứng là ba góc đối diện với ba cạnh trên. Chứng minh rằng, nếu $a+b=tan(\frac{\gamma}{2})(a*tan(\alpha)+b*tan(\beta))$, thì tam giác đang xét là tam giác cân.




#731302 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 25-10-2021 - 07:25

Bài 9: [IMO 1988] Cho $n$ là một số nguyên dương và $A_1,A_2,...,A_{2n+1}$ là các tập hợp con của tập hợp $B$. Giả sử rằng: 

 

(a) Mỗi $A_i$ có đúng $2n$ phần tử.

 

(b) Mỗi $A_i\cap A_i(1\le i<j\le 2n+1)$ chứa đúng một phần tử.

 

(c) Mọi phần tử của $B$ đều thuộc vào ít nhất hai tập con $A_i$.

 

Hỏi rằng với những giá trị nào của số $n$ thì chúng ta có thể đánh dấu mọi phần tử của $B$ bởi các số $0$ và $1$ sao cho mỗi $A_i$ có đúng $n$ phần tử được đánh số $0$




#731285 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 24-10-2021 - 07:07

Bài 8: [IMO 1987] Chứng minh rằng không tồn tại hàm $f$ nào từ tập hợp các số nguyên không âm vào chính nó thoả mãn $f(f(n))=n+1987$ với mọi $n$.




#731267 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 22-10-2021 - 19:22

Bài 7: [IMO 1978] Cho tam giác $ABC$ cân tại $A$. Một đường tròn tiếp xúc trong với đường tròn ngoại tiếp tam giác đó và với các cạnh $AB,AC$ ở các điểm $P,Q$ tương ứng. Chứng minh rằng: Trung điểm của đoạn thẳng $PQ$ chính là tâm đường tròn nội tiếp tam giác $ABC$.




#731247 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 21-10-2021 - 18:03

Bài 6: [IMO 1963] Chứng minh rằng: $cos \frac{\pi}{7}-cos \frac{2\pi}{7}+cos \frac{3\pi}{7}=\frac{1}{2}$




#731224 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 20-10-2021 - 18:29

Bài 5: [IMO 1995] Hãy xác định giá trị lớn nhất của $x_0$ sao cho tồn tại một dãy các số thực dương $x_0,x_1,...,x_{1995}$ thoả mãn $x_0=x_{1995}$ và với mọi $i=1,2,3,...,1995$ thì: $x_{i-1}+\frac{2}{x_{i-1}}=2x_i+\frac{1}{x_i}$




#731213 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 19-10-2021 - 17:58

Bài 4: [IMO 1994] Với bất kỳ một số nguyên dương $k$ nào ta ký hiệu $f(k)$ là số các phần tử của tập hợp $\left\{k+1,k+2,...,2k\right\}$ mà trong biểu diễn ở cơ số $2$ (hệ nhị phân)  thì có đúng ba số $1$

 

a) Chứng minh rằng với mỗi số nguyên dương $m$ tồn tại ít nhất một số nguyên $k$ sao cho $f(k)=m$

 

b) Xác định tất cả các số nguyên dương $m$ sao cho có đúng một số nguyên dương $k$ thoả mãn $f(k)=m$




#731206 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 18-10-2021 - 21:03

Bài 3: [IMO 1985] Cho một tập hợp $M$ gồm $1985$ số nguyên dương phân biệt, sao cho không có số nào có ước nguyên tố lớn hơn $26$. Chứng minh rằng $M$ chứa ít nhất một tập con bốn phần tử mà tích của chúng là một luỹ thừa bậc bốn của một số nguyên.




#731195 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 17-10-2021 - 17:42

Bài 2: [IMO 2002] Hãy xác định tất cả các hàm $f: \mathbb{R}\rightarrow \mathbb{R}$ sao cho: $(f(x)+f(z))(f(y)+f(t))=f(xy-zt)+f(xt+yz)$ với mọi $x,y,z,t\in \mathbb{R}$




#731184 [TOPIC] Mỗi ngày một bài toán IMO

Gửi bởi tritanngo99 trong 16-10-2021 - 18:56

Mùa đông đến rồi, sợ diễn đàn lạnh lẽo, nên mình tạo topic này có tên : "Mỗi ngày một bài toán IMO", mục đích chính là để post lại các bài IMO đã qua để mọi người cùng thảo luận cho vui, học hỏi là chính, có thể đóng góp nhiều lời giải khác nhau để nâng cao kiến thức. 

 

Không có gì hơn, có mấy điều, mong các bạn chú ý :

 

+ Không được spam tránh gây loãng topic

 

+ Mỗi ngày, mình sẽ đăng một bài, nên nếu bạn nào có ý định đề nghị bài nào đó hay thì có thể gửi qua tin nhắn của mình trên diễn đàn cũng được nhé

 

Ngoài ra, mình khuyến khích các bạn có thể dẫn một số bài liên quan hoặc tương tự đến những bài IMO này để mọi người có thể mở rộng thêm những kiến thức về bài toán IMO được nhắc tới.

 

Một lần nữa không có gì hơn, mình mong các bạn tham gia nhiệt tình sôi nổi để diễn đàn không bị cô đơn giữa mùa đông sắp đến nhé ! 

 

Để mở đầu, mình bắt đầu một bài như sau:

 

Bài 1: [IMO 1990] Cho $n\ge 3$ là một số nguyên và xét tập hợp $E$ gồm có $2n-1$ điểm nằm trên một đường tròn. Giả sử rằng có đúng $k$ điểm được tô màu đen. Một cách tô màu như thế được gọi là "tốt' nếu như có ít nhất một cặp điểm màu đen sao cho phần trong của một trong hai cung nhận nó làm đầu mút chứa chính xác $n$ điểm của $E$. Hãy xác định giá trị bé nhất của $k$ sao cho với mọi cách tô màu $k$ điểm của $E$ đều là tốt. 




#731153 IMO short list (problems+solutions) và một vài tài liệu olympic

Gửi bởi tritanngo99 trong 14-10-2021 - 22:19

updated :

+ APMO 2020 [solutions]: https://www.apmo-off...pmo2020_sol.pdf

+ APMO 2021 [solutions]: https://www.apmo-off...pmo2021_sol.pdf

+ APMO 2022 [solutions]: https://www.apmo-off...pmo2022_sol.pdf