Đến nội dung

tritanngo99

tritanngo99

Đăng ký: 06-04-2015
Offline Đăng nhập: 12-03-2024 - 08:02
****-

#728400 a/ tính $AI$,$AK$ theo b,c b/ chứng minh rằng: $...

Gửi bởi tritanngo99 trong 25-06-2021 - 10:51

Cho $\triangle{ABC}$ vuông tại $A$, đường cao $AH$. Gọi $I$ và $K$ thứ tự là hình chiếu của $H$ trên $AB$ và$AC$. Đặt $AB=c;AC=b$

a/ tính $AI$,$AK$ theo b,c

b/ chứng minh rằng: $\frac{BI}{CK}=\frac{c^3}{b^3}$

khaa.png

 

Lời giải:  

 

a) Áp dụng hệ thức lượng vào $\triangle{ABC}$ vuông tại $A$. Ta có: $\frac{1}{AH^2}=\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2+c^2}{b^2c^2}$

 

Nên từ đây ta suy ra được: $AH^2=\frac{b^2c^2}{b^2+c^2}\implies AH=\frac{bc}{\sqrt{b^2+c^2}}$

 

Tiếp tục, áp dụng hệ thức lượng vào $\triangle{AHB}$, ta có: $AH^2=AI.AB\implies AI=\frac{AH^2}{AB}=\frac{\frac{b^2c^2}{b^2+c^2}}{c}=\frac{b^2c}{b^2+c^2}$

 

Tương tự, áp dụng hệ thức lượng vào $\triangle{AHC}$, ta có: $AH^2=AK.AC\implies AK=\frac{AH^2}{AC}=\frac{\frac{b^2c^2}{b^2+c^2}}{b}=\frac{bc^2}{b^2+c^2}$

 

b)

Ta có: $BI = AB-AI = c -\frac{b^2c}{b^2+c^2} = \frac{c(b^2+c^2)-b^2c}{b^2+c^2}=\frac{c^3}{b^2+c^2} $

 

và : $CK = AC-AK = b -\frac{bc^2}{b^2+c^2} = \frac{b(b^2+c^2)-bc^2}{b^2+c^2}=\frac{b^3}{b^2+c^2} $

 

Nên từ đây ta suy ra được $\frac{BI}{CK}=\frac{\frac{c^3}{b^2+c^2}}{\frac{b^3}{b^2+c^2} } = \frac{c^3}{b^2+c^2} . \frac{b^2+c^2}{b^3}=\frac{c^3}{b^3}$

 

Vậy ta có điều phải chứng minh !




#727265 Học gì ở Toán phổ thông

Gửi bởi tritanngo99 trong 18-05-2021 - 23:07

Em mới search được link này khá hay về lịch sử của nhà toán học Alexander Grothendieck: https://arxiv.org/pdf/1605.08112.pdf

Hy vọng có ai dịch ra để mọi người cùng đọc với ạ!




#726115 Học gì ở Toán phổ thông

Gửi bởi tritanngo99 trong 28-04-2021 - 19:33

Em có thêm một ý kiến nữa: Những bài được đăng toán hiện đại, chúng ta nên lưu lại ở một nơi nào đó để lỡ diễn đàn mất dữ liệu thì vẫn có cái để khôi phục ạ!




#725549 Học gì ở Toán phổ thông

Gửi bởi tritanngo99 trong 17-04-2021 - 15:05

E có thêm một đề xuất nữa là : Sau khi đọc paper này : https://arxiv.org/pdf/2104.06741.pdf [DIOPHANTINE PROBLEMS OVER Z ab MODULO PRIME NUMBERS]

 

Em thấy là họ định nghĩa lại định lý thặng dư Trung Hoa theo một cách khác, có vẻ cao cấp. Nên e mong là có các post để làm cầu nối giữa những thứ sơ cấp và cao cấp như thế này ạ ! 




#725323 Học gì ở Toán phổ thông

Gửi bởi tritanngo99 trong 12-04-2021 - 21:19

Em chia sẻ một chút ý kiến của em về toán olympic, em vốn là người không giỏi về olympic nhưng vẫn luôn quan niệm rằng, mình vẫn luôn theo dõi nó dù mình không còn học cấp 3 nữa (hồi từ lớp 10 lên học toán chuyên, ập vào những bài toán olympic thực sự vô cùng khó, cầm một cái đề giỏi lắm là giải được 1 câu) , và em luôn  cực kì thích thú với hai mảng là số học và tổ hợp, em vẫn cố gắng trao dồi nó cho đến tận bây giờ. Và hiện tại, e đang theo học CNTT, không còn làm toán nhiều nữa, nhưng em nhận ra một số điều thú vị mà kiến thức số học, tổ hợp đem lại cho em, đó là khi em học về mảng quy hoạch động trong tin học thì e thấy nó có nhiều phần liên quan đến tổ hợp đếm, hay hiện tại e đang có học về RSA thì nó lại liên quan đến số học ,đó là những phép đồng dư. Và e càng học thì e cảm thấy rằng, để phát huy những cái hay của toán thì mình cần thêm giữa cầu nối toán sơ cấp và toán cao cấp. Chẳng hạn như bài toán fibonacii, nó có một cách giải liên quan đến ma trận khá là hay hoặc những bài toán liên quan đến công thức truy hồi tuyến tính tương tự như vậy ! Em mong là diễn đàn mình ngày càng có nhiều bài toán mang tính cầu nối giữa sơ cấp với cao cấp, giữa hình học với đại số, rồi những bài toán mô hình hoá những vấn đề thực tế, như vậy toán học sẽ thú vị hơn ạ ! 




#724325 NGƯỜI THÔNG MINH NHẤT HÀNH TINH

Gửi bởi tritanngo99 trong 30-07-2019 - 06:19

NGƯỜI THÔNG MINH NHẤT HÀNH TINH

(dành cho người quan tâm đến Toán, Vật lý và Triết học)

...Grigori Perelman, sinh năm 1966 - đứng thứ 9 trong danh sách 100 thiên tài đang sống giữa chúng ta (kết quả bầu năm 2007 khi ông còn chưa được giải Clay vì lời giải bài toán “thiên niên kỷ” của Poincare, trong khi đó đứng đầu danh sách là Hoffman, cha đẻ của “thuốc gây ảo giác LSD”). Tuy vậy theo tôi biết thì cộng đồng khoa học đã từ lâu công nhận ông là nhà khoa học thông thái nhất hành tinh, tôi tuy ngoại đạo nhưng cũng rất tò mò muốn biết con người này thực ra là ai, ngoài những thông tin “lá cải” về việc ông từ chối nhận giải thưởng 1 triệu đôla và ở ẩn đối với tất cả xã hội do đó sống nghèo đói. Đơn giản khi một con người đã tuyệt đỉnh thông minh, thì ngoài việc “lập dị” ra thì mỗi hành động của ông ta phải có cả một câu chuyện dài phía sau, chứ không phải kiểu “nổ” bất thình lình... Và qua cuộc đời ông, tôi thấy được một câu chuyện rất hay về các nhà toán học thời hiện đại, cũng như toán học cần thiết để làm gì, từ những cuộc tranh cãi “32 con gà” ngày nay cho đến thành tựu của Ngô Bảo Châu đều có ý nghĩa cao siêu hơn ta hằng nghĩ!

Đầu tiên phải nói thật, gây tò mò nhất đối với tôi là việc ngài Perelman là “chuyên gia từ chối các giải thưởng danh giá”. Hãy xem ông đã từ chối gì:

-1996 từ chối giải của Hiệp hội toán học châu Âu (EMC) dành cho các nhà toán học trẻ - giải thưởng này như một bảo đảm cho người lĩnh giải sẽ được nhận vào làm việc tại các trường đại học danh giá nhất của Âu, Mỹ và đảm bảo cuộc sống vật chất dài lâu.

-2006 ông từ chối nhận giải Fields danh giá - một "Nobel trong toán học" (lần kế tiếp Ngô Bảo Châu đã giành giải này cùng 3 nhà toán học khác tại Ấn Độ, 2010).

-2010 ông từ chối nhận giải thưởng của Viện toán học Clay với số tiền 1 triệu đô la do giải được 1 trong 7 bài toán “thiên niên kỷ”- đó là bài toán Poincaré từ 1904 và 98 năm sau loài người mới có lời giải! 6 bài toán kia vẫn còn chờ đợi...

-2011 ông từ chối trở thành viện sỹ Viện hàn lâm khoa học Nga. Tuy chỉ là danh hiệu trong nước, nhưng về giá trị vật chất còn lớn hơn cả những lần “từ chối” trước kia, sẽ đủ cho ông sung sướng cả đời...

Vì sao như vậy? Sinh ra ở Leningrad (CCCP), cậu bé Do thái Perelman học ở một trường bình thường ở ngoại ô cho đến năm lớp 9, chỉ sinh hoạt ở nhóm học sinh giỏi toán tại Cung thiếu nhi thành phố. Năm 1982 cậu học sinh 15 tuổi này đoạt giải nhất với số điểm tuyệt đối ở cuộc thi Olimpic Toán quốc tế tại Hungary (khá giống Ngô Bảo Châu, trẻ hơn mấy tháng). Sau đấy cậu mới được vào học trường chuyên toán - lý 239 nổi tiếng của Leningrad. Vào đại học, vì được chọn trường, cậu suýt chọn trường nhạc (cậu có biết chơi violin nhưng không cơ bản) nhưng sau nghe lời mẹ, lại đi vào khoa toán. Sau khi bảo vệ luận án tiến sỹ toán, cậu sang Mỹ đầu những năm 90 để làm việc tại một số trường đại học. Ngay lúc còn rất trẻ này cậu đã rất khác người: sống rất khắc khổ, thường xuyên chỉ ăn bánh mỳ, sữa và phomat. Ngay từ lúc này cậu đã bắt tay vào giải bài toán thiên niên kỷ của Poincaré. Các phát hiện quan trọng lần lượt ra đời, ví dụ như một cách chứng minh ngoạn mục của Perelman cho “Lý thuyết về tâm hồn” (1994, hình học vi phân).

Lần “từ chối” đầu tiên năm 1996, Perelman không chịu nhận giải EMC cho các nhà toán học trẻ xuất sắc đồng nghĩa với chìa khóa vàng mở cánh cửa vào những vị trí làm việc danh giá và nhiều bổng lộc, nhưng đối với chàng trai 30 tuổi này “nó không quan trọng”! Ông bắt đầu cuộc đấu tranh không khoan nhượng nhưng tất nhiên không hề cân sức với lề thói quan liêu, giả tạo của làng toán học thế giới. Ví dụ sau này khi đi xin việc ở đại học Stanford bắt buộc phải nộp lý lịch, ông kiên quyết từ chối đưa C/v. Ông bảo: “Nếu họ biết các công trình của tôi, thì họ cần gì C/v của tôi? Còn nếu họ cần C/v của tôi, nghĩa là họ không đọc các công trình của tôi...” - thật tự tin, một tuyên bố của chàng trai hơn 30 tuổi!

Sau 1996 ông về nước, sống trong căn hộ một buồng với bà mẹ ở ngoại ô Sant Peterburg (Leningrad đã lấy lại tên cũ) - bố và cô em gái đã ra sống ở nước ngoài. Người ta thường thấy người đàn ông trán hói, tóc dài, không già không trẻ đi bộ mua bánh mỳ, mua trứng hoặc đi tàu vào thành phố, ít khi giao tiếp với ai. Ông hoàn toàn không quan tâm đang ăn mặc gì, chẳng chịu cắt tóc, cạo râu, thậm chí không mấy khi cắt móng tay - tại sao như vậy chả ai biết, bởi vì ông chả nói chuyện với ai...

Năm 2002-2003 ông công bố 3 bài viết lập tức gây nên xáo động trong làng toán thế giới, ngay từ bài đầu tiên đã suy ra được rằng Perelman đã có lời giải bài toán thiên niên kỷ Poincare! Cách ông công bố cũng chả giống ai: khác với truyền thống là phải gửi đến tòa soạn các tạp chí toán học uy tín trên thế giới, thì ông đưa lên internet cho tất cả mọi người khảo nghiệm! Bài toán có đầu đề chỉ hai chục chữ này đòi hỏi cách giải siêu phức tạp, và Perelman phải kết hợp cả những hiểu biết rất sâu sắc về vật lý lý thuyết của mình mới đi đến thành công.

Nhiều nhà toán học hàng đầu thế giới công bố những công trình nghiên cứu về lời giải của Perelman, và đăng trên các tạp chí uy tín, do đó danh tiếng của Perelman được càng nhiều người biết đến. Trên đường chứng minh định lý đó Perelman đã phát triển tiếp nghiên cứu của nhà toán học Mỹ Richard Hamilton, người đã phải dừng bước giữ chừng vì không đủ các công cụ toán học. Lạ một cái, Hamilton lại không tin là Perelman đã giải được bài toán Poincaré, do đó đã đề nghị “ông trùm toán học Trung Quốc” Khâu Thành Đồng nghiên cứu tiếp. Thế là họ Khâu cùng hai đệ tử của mình là Tào Hoài Đông và Chu Hy Bình tuyên bố với toàn thế giới rằng chính họ mới đưa ra lời giải trọn vẹn của giả thuyết Poincare, và “công lao của Perelman nếu có thì cũng nhiều nhất là 20% mà thôi!”.

 pere.jpg

Thế là nhiều trường đại học lớn lập những nhóm chuyên tập trung để phân tích về lời giải bài toán thiên niên kỷ, trong đó tất nhiên có cả Viện toán Clay. Trong thời gian hàng chục triệu đô la được bỏ ra để tìm chủ nhân của cách giải bài toán hóc hiểm này, thì Perelman như ông đã kể lại, thi thoảng kiếm chút tiền còm qua việc được mời nói chuyện ở nước ngoài về chính cách giải bài toán của mình. Sự thật khoa học không thể bôi đen, nhất là trong thời đại internet, và đến 2006 thì tất cả, trong đó có cả Richard Hamilton đi đến kết luận, chính PERELMAN MỘT MÌNH đã giải quyết vấn đề trọn vẹn! “Bang hội toán gốc Trung Quốc” đành xấu hổ rút lại lời tuyên bố của mình, tuy vậy vẫn cay cú dọa kiện những ai đã vạch mặt họ, kể cả Viện toán Clay.

Trong thời gian này, Perelman một mặt không mấy khi quan hệ với xã hội bên ngoài, mặt khác khá tích cực hợp tác với các đồng nghiệp quốc tế để làm sáng tỏ vấn đề, tất nhiên là qua... internet. Những cuộc chiến ngoài toán học, theo ông là quá vô bổ và thấp hèn, khiến ông mệt mỏi và từ 2005 tự xin ra khỏi trường đại học, ông thực tế đã chính thức xa rời giới khoa học. Khi cả nước nhận tin ông sẽ được giải Fields 2006 lập tức ông nổi tiếng kinh khủng, xung quanh căn hộ của mẹ con ông bao giờ cũng có bọn “kền kền” báo chí lấp ló, và ông không còn dễ đi bộ mua thực phẩm như trước nữa. Tuy vậy ông kiên quyết không chịu thay đổi: ăn mặc lôi thôi, không cắt tóc cạo râu, chẳng cắt móng tay và chưa bao giờ có vợ con. Môn thể thao yêu thích là bóng bàn và cờ vua lâu lắm rồi chẳng chơi cùng ai, chỉ còn âm nhạc ông chơi trên violin chứng tỏ sự tồn tại của ông trong xã hội...

Tình trạng Perelman có thể từ chối giải Fields là “cú sốc” cho giới lãnh đạo trong làng toán. Chính chủ tịch Hội đồng toán học thế giới John Ball đến tận nơi và 2 ngày trời tìm cách đề xuất với ông các phương án khác nhau, kể cả “nhận giải mà không cần đến”. Tuy vậy Perelman vẫn khăng khăng không nhận giải, ông “giận” giới toán học đã quá quan liêu và kẻ cả, làm ông và bao người khác tốn công tốn sức trong cuộc tranh chấp với “phe Tàu”. Ông giải thích: “Những người lập dị (như ông) không hề vi phạm chuẩn mực đạo đức” và “tôi dừng lại, để cho mọi người thấy tôi không phải là vật nuôi trong vườn bách thú”. Không nhận giải - đó là chính kiến của ông! Đối với người ngoại đạo như chúng ta, ông đơn giản là người “từ chối bắt tay Nhà vua Tây Ban Nha" (giải Fields 2006 được trao tại Tây Ban Nha) - nhưng giới khoa học thì đều hiểu thông điệp của Perelman. Chẳng đi nhận giải, ông đã làm toán học trở nên hấp dẫn hơn bao giờ hết!

Ông vẫn sống như một ẩn sỹ, chỉ đôi lần ông trả lời phỏng vấn báo chí Nga, nhưng sau đó dừng hẳn, vì “không tin tưởng”. Người ta quay được một phim ngắn về cuộc sống ngày thường của ông bằng cách xông cả đoàn quay phim vào nhà ông, đẩy bật bà mẹ già ra và quay ông đang vô cùng ngơ ngác. Sau đó ông chỉ đồng ý quay một phim tài liệu ngắn nữa của đài truyền hình Nhật NTK, còn lại người ta biết về ông càng ngày càng ít đi!

Khi công trạng của ông đã được làm rõ, ngay cả Viện toán Clay (đơn vị xét và trao giải) cũng như cộng đồng quốc tế kêu gọi ông công bố công trình của mình lại trên tạp chí toán học uy tín bất kỳ nào, và trong vòng 2 năm không ai phản bác được, thì sẽ đủ tiêu chuẩn xét trao giải cho tác giả. Thế nhưng không ai thuyết phục được ông làm cái điều tưởng chừng đơn giản và hiển nhiên đó – tạp chí toán học uy tín đối với giới toán học như một dấu “OTK” về chất lượng, nhưng riêng Perelman kiên quyết không cần đến cái sự OTK đấy...

Cuối cùng Viện toán Clay chịu thua, công nhận ông là người xứng đáng được trao giải 1 triệu $ vào năm 2010, khi mà theo một số nguồn tin thì Perelman đã tiêu hết tiền tích cóp thời còn “làm toán”, ông rất khát tiền. Ông suy nghĩ 3 tháng trời, rồi sau đó đưa ra câu trả lời làm tất cả mọi người phải kinh ngạc: “Tôi có rất nhiều nguyên nhân để đi nhận hay không đi nhận giải thưởng này, do đó tôi đã cân nhắc khá lâu, nhưng tôi quyết định không nhận nó. Nếu nói thật ngắn gọn về nguyên nhân, thì đó là sự không đồng ý với cách điều hành của giới toán học quốc tế. Tôi không thích các quyết định của họ, tôi thấy không công bằng. Tôi đánh giá đóng góp của ngài Richard Hamilton hoàn toàn không thua kém đóng góp của tôi trong việc giải bài toán”. Đây là một ví dụ tuyệt vời về tinh thần hiệp sỹ trong khoa học: ông đề cao chính Hamilton, người đã không tin tưởng ở ông, và đã cùng với nhà toán học Trung Quốc Khâu Thành Đồng cứ luẩn quẩn mãi ở cái lời giải và việc đó đã làm khổ ông mấy năm về trước!

Từ chối nhận 1 triệu $ (hơn một năm sau các nhà tổ chức mới quyết định dùng số tiền này để hỗ trợ các nhà toán học trẻ) Perelman nổi tiếng vô cùng, biết bao người tìm cách hỏi ông tại sao lại không nhận tiền khi bây giờ ông nghèo rồi, thì chỉ một lần ông đã trả lời: “Tôi cái gì cũng có đầy đủ”. Câu chuyện cũng kết thúc có hậu cho Richard Hamilton: năm 2011 ông này cùng với một người nữa được nhận giải “Nobel châu Á” - giải Shaw và 1 triệu $ cho những thành tựu toán học, mà trên cơ sở đó Perelman đã giải quyết thành công bài toán thiên niên kỷ. Hamilton đã đi nhận giải...

Việc ông từ chối làm Viện sỹ viện hàn lâm khoa học Nga năm 2011 khá dễ hiểu, vì sau này ông xin visa 10 năm đi Thụy Điển. Nhưng để hiểu ông và bài toán của ông hơn, tôi xin tóm tắt một trong rất ít các cuộc phỏng vấn của ông - ngay cuộc phỏng vấn này (với một nhà làm phim Israel - qua quan hệ Do Thái của mẹ ông giới thiệu) đến nay cũng là đề tài tranh luận, rằng có nó thật không hay là bịa nốt. Những ý chính ông đã nói ra:

-thời niên thiếu làm toán đối với ông như môn thể dục cho trí não. Hồi đó chỉ có bài khó hay bài dễ chứ chưa gặp bài nào không giải được. Bài toán ông thấy khó nhất hồi đó do ông tự đặt ra: Chúa phải đi với vận tốc bao nhiêu mới có thể lướt trên mặt nước mà không chìm, đúng như trong Kinh thánh. Ông giải với những khái niệm về tô-pô học - “tôi thích tô-pô vì nhiều ứng dụng thực tế của môn học đó! Giải nhất toán quốc tế của tôi chỉ có rất ít ý nghĩa”.

-bất kỳ một lý thuyết toán học đúng đắn nào đều sẽ tìm ra áp dụng thực tế của nó, ít ra là Perelman tin như vậy và từ trước tới nay đều thấy như vậy! Ví dụ tiêu biểu: George Bul muốn định đề hóa triết học, cuối cùng phát minh ra lý thuyết hàm số Bul, trên cơ sở đó con người mới tạo ra được máy tính, tàu vũ trụ...

-Định lý Poincaré có ý nghĩa thực tiễn vô cùng to lớn. Nó giải thích cho nhiều quá trình trong việc hình thành vũ trụ, và sắp tới sẽ rất quan trọng trong công nghệ nano.

-những phát mình mới đây trong khoa học nano đều vớ vẩn hết, cũng như nhiều hình dung sai lầm về việc hình thành vũ trụ. Vũ trụ xuất hiện ban đầu từ một điểm vô cùng nhỏ, sau đó là các khoảng không xuất hiện để vũ trụ to ra nhanh chóng. Định lý Poincaré chính là “Công thức của vũ trụ” - dựa vào đó ta có thể có cách thu vũ trụ lại thành một điểm ban đầu. Tôi chính là người biết điều khiển các khoảng không đó!

Bình luận thêm của tác giả: nghe thì có vẻ là “học thuyết âm mưu” nhưng thực sự những hiểu biết siêu đẳng của Perelman có nguy cơ đe dọa loài người và vũ trụ. Không phải ngẫu nhiên mà tình báo Nga cũng như nhiều nước khác không thể rời mắt khỏi ông. Và Perelman - con người với trí tuệ xuất chúng và hoàn toàn tỉnh táo này - phải biết làm gì, nói gì, hành xử ra sao để ít nhất là bảo vệ được bản thân và bảo vệ được nhân loại. Có cần thiết để chúng ta điều khiển được vũ trụ không, nếu ngay một trái đất này mà chúng ta còn làm cho bung bét hết cả? Đừng tin tất cả những gì ông tuyên bố, mặc dù đúng là “tôi là con người điều khiển được vũ trụ, vậy tại sao tôi còn phải chạy theo 1 triệu đôla gì đấy để làm gì?”

P.S. Mới đây Stephen Hawking - nhà vật lý đương đại và là một trong những bộ óc sáng lạn nhất hành tinh đã tuyên bố:”các thí nghiệm với hạt Higgs có thể tiêu diệt không gian, thời gian!” và “bozon Higgs có thể dẫn đến việc phá tan chân không, làm cả vũ trụ chuyển sang trạng thái vật lý mới” - tác giả nhớ lại cuộc nói chuyện hầu như là duy nhất mấy năm trước của Perelman, ông đã nói về hiện tượng này trước đó lâu rồi. Chứng tỏ Perelman đã nói hoàn toàn tỉnh táo và nghiêm túc - ông biết “Công thức của vũ trụ”!

P.S.2: bộ phim “Công thức của vũ trụ” sẽ do đạo diễn David Cameroon dàn dựng và Perelman đã nhận lời đóng vai của chính mình, tất nhiên không phải vì tiền...

Còn chúng ta thì vẫn phân vân với bài toán "32 gà và 4 chuồng..."!

--------

Dưới đây là bài dịch dành cho các bạn thích tìm hiểu ngọn ngành sâu hơn về học thuật (dài và khá phức tạp - cám ơn bạn Ngô Văn Minh):

Poincaré, Perelman, Khưu Thành Đồng và.....

Ức đoán Poincaré, bài toán của thiên niên kỉ (được Viện Clay treo giải 1 triệu đô la) đã được G. Perelman chứng minh. Nhưng nhà toán học 40 tuổi từ chối huy chương Fields, và có lẽ cả 1 triệu đô la. Câu chuyện không ngừng ở đây khi ông Khưu muốn tranh công...

Huy chương Fields 2006

Tháng 8 vừa qua, nhân Đại hội Thế giới họp tại Madrid, Liên hiệp Quốc tế các nhà Toán học (IMU) đã trao tặng huy chương Fields (về toán học, tương đương với giải Nobel), như thường lệ bốn năm một lần (1). Bốn người được giải : hai chuyên gia về tính xác suất Werner (Pháp) và Okoundov (Nga) – công trình của họ cũng liên quan tới những ngành khác – một nhà giải tích học và lí thuyết số người Úc gốc Hoa Terence Yao (Đào Triết Hiên), và một người Nga nữa, nhà tô pô hình học Grigori Perelman (viện Steklov, St-Petersburg). Phải nói là tiếng tăm của Perelman trên các media quốc tế đã vượt xa ba đồng nghiệp. Tên tuổi của ông đã ra khỏi lãnh vực khoa học thuần tuý, hiển hiện trên trang nhất của những nhật báo lớn. Đây là lần đầu tiên toán học trở thành đề tài sôi nổi của báo chí kể từ sự tích « anh hùng » của Andrew Wiles (chứng minh được định lí « lớn » của Fermat), cuối thế kỉ XX. Cũng phải nói là trong « vụ Perelman » này, có đầy đủ những tố chất « glamour » chẳng mấy khi tìm thấy nơi các nhà toán học và bộ môn khắc khổ của họ : đầu tiên là sự « hóc búa » phi thường của ức đoán Poincaré (bằng chứng là Viện Clay đã xếp nó trong « 7 bài toán của thiên niên kỉ », và treo thưởng 1 triệu đô la cho ai giải được một trong 7 bài ấy) ; sau đó là cá tính phi phàm của chính Perelman, sau khi chứng minh xong đã từ chối, không nhận huy chương Fields, và chắc cũng sẽ từ chối cả giải thưởng 1 triệu đô la ; thêm vào đó là cuộc tranh cãi hơi bị nhầu về « ai trước ai », « ai hơn ai » đang tác động tới sự « thanh cao » của toán học....

PERELMAN và POINCARE

Với ngoại hình như Rasputin, móng tay dài như đồ nho, phong độ như ẩn sĩ, Grigory (Grisha, đối với người thân – nhưng biết ai là « thân » ?) đúng là bức chân dung biếm hoạ của nhà bác học lập dị trong quan niệm của đại chúng. Nhưng ngay cả những người dị ứng với tác phong của Perelman cũng phải thừa nhận khía cạnh « trước sau như một » của ông : năm 1990, Perelman đã từ chối huy chương Nhà toán học trẻ của Châu Âu (Société européenne de mathématiques), bây giờ từ chối huy chương Fields (mặc dầu chủ tịch MIU đã đích thân bay sang St. Petersburg tìm cách thuyết phục), mai kia chắc sẽ từ chối giải Clay. Một người đàn ông bốn mươi tuổi vẫn còn ở với mẹ, sống với 100 đô một tháng, mà từ chối 1 triệu đô la, thì không thể chỉ là làm điệu. Trong lịch sử khoa học, hành xử như Perelman hầu như không có tiền lệ. Mặc dầu trong giới toán học, không thiếu những nhân vật kì dị, chẳng hạn như nhà hình học đại số Alexandre Grothendieck, đang ở đỉnh cao vinh quang, đã từ bỏ tất cả để đi chăn dê, nghe nói trên núi Pyrénées. Nhưng ngay cả Grothendieck, tuy không chịu sang Moskva năm 1966 để nhận huy chương Fields vì bất đồng chính trị, cũng không từ chối giải thưởng này. Trong một lãnh vực khác, trường hợp duy nhất còn ở trong kí ức là trường hợp Jean-Paul Sartre từ chối giải Nobel văn học.

Dù sao chăng nữa, cá tính của Perelman có thể không được nhất trí tán thưởng, song Perelman với tư cách nhà toán học thì không ai có thể phủ nhận : năm 1982, ở tuổi 16, đã được giải nhất trong cuộc thi Olympiad toán học với số điểm tuyệt đối (42/42) ; đỗ tiến sĩ vào cuối thập niên 1980, là người duy nhất trong cùng khoá, được tuyển mộ làm nghiên cứu viên ở Viện Steklov (tương đương với Viện quốc gia nghiên cứu khoa học CNRS của Pháp) ; trong những năm 1990, làm nghiên cứu « sau tiến sĩ » ở New York, được mấy trường, viện mời làm việc thường trực ở Hoa Kì, nhưng đều khước từ và trở về St. Petersburg. Từ đó, hầu như mất tăm mất tích, cho đến 2002-2003, Perelman đưa lên mạng internet ba bài viết ngắn. Chính ba bài viết trứ danh ấy, bốn năm sau, đã được tưởng thưởng vì « những đóng góp vào hình học, mang lại những hiểu biết cách mạng về cấu trúc hình học và giải tích của dòng chảy Ricci ».

Câu văn « bí hiểm » đó của Uỷ ban xét duyệt giải Fields (chúng tôi sẽ trở lại ở dưới) không hề đá động tới nhân vật « đầu tiên » của câu chuyện : Henri Poincaré (1854-1912) – đừng nhầm với anh em họ là Raymond Poincaré, thủ tướng – mà nhân thân hoàn toàn trái nghịch với G. Perelman. Đỉnh cao của khoa học đương đại, nhà toán học kiêm vật lí học, triết lí khoa học, được rất nhiều giải thưởng quốc tế, thành viên hay chủ tịch không biết bao nhiêu hiệp hội bác học, thành viên Viện hàn lâm khoa học Pháp, Henri Poincaré là hình ảnh tiêu biểu tốt đẹp nhất về sự thành đạt trí tuệ và xã hội mà giai cấp tư sản thế kỉ XIX có thể sản sinh. Ông cũng là nhà bác học « xuyên ngành » cuối cùng : là nhà triết học về phương pháp luận, ông là tác giả những công trình kinh điển về nền tảng phương pháp khoa học, về cơ cấu não trạng của quá trình khám phá ; là nhà vật lí, ông đã 12 lần được đề nghị giải Nobel, và ngày nay được coi là đồng tác giả của thuyết tương đối « thu hẹp » (2) ; với tư cách nhà toán học, bên cạnh David Hilbert, ông được coi là nhà toán học vĩ đại nhất, đồng thời là « bậc thầy phổ quát cuối cùng », bao trùm đại số học lẫn hình học, lí thuyết số và hình học. Chính ông, trong một công trình năm 1895, đã sáng lập ra một ngành mới của hình học mà ông đặt tên là « analysis situs », ngày nay gọi là tôpô học (topo, tiếng Hi Lạp, có nghĩa : nơi, không gian). Trong một trong những tác phẩm cuối cùng (viết năm 1904), ông đã « nhân tiện » nêu câu hỏi (câu hỏi này sẽ được gọi là « ức đoán của Poincaré ») mà không đào sâu thêm vì « sợ nó dẫn chúng ta đi quá xa ». Nói theo ngôn ngữ toán học hiện đại dưới dạng tổng quát nhất, ức đoán Poincaré có thể phát biểu như sau : « Mọi đa tạp tô pô (không biên) n chiều, compac, liên thông đơn thuần, đều đồng phôi với mặt cầu n chiều ». Có thể nói, đối với các nhà tô pô học, mệnh đề ấy đã trở thành một thứ « Chén thiêng » (3), mục tiêu của không biết bao cuộc tìm kiếm, giống như định lí « lớn » của Fermat đối với các nhà số học trong suốt ba trăm năm trời. Không thể nào liệt kê được tên tuổi của tất cả các nhà toán học, trong đó có những tay cự phách, đã mắc « hội chứng Poincaré ». Giáo sư John Morgan, chủ nhiệm khoa Toán trường Đại học Columbia, thú nhận thoải mái : « Cuộc đời toán học của tôi đã bị ức đoán Poincaré chế ngự. Tôi tưởng sẽ không bao giờ được thấy nó được chứng minh. Tôi tưởng sẽ chẳng có ai tiếp cận được chứng minh ».

Trước khi đi xa hơn, không thể không giải thích đôi chút để độc giả « ngoại đạo » có một ý niệm về nội dung mệnh đề « ức đoán » quá bí hiểm nói trên. Như chúng tôi đã có dịp đề cập trên cột báo này (4), viết bài « phổ biến » về toán học là một việc làm nguy hiểm, bởi vì ngôn ngữ toán học hết sức chuẩn xác, chệch đi một chút có thể làm lệch ý nghĩa, thậm chí đảo ngược ý nghĩa, và điều này thường hay xảy ra khi người trình bày dùng những hình ảnh trực quan và ngôn ngữ thường ngày. Ý thức rõ điều đó, chúng ta hãy thử xem xét từng từ ngữ của ức đoán Poincaré :

Từ đầu bài đến đây, chúng tôi đã dùng mà không định nghĩa hai danh từ « hình học » và « tô pô học ». Theo trực quan, mọi người dễ chấp nhận định nghĩa hình học là bộ môn nghiên cứu các hình, dạng. Theo từ nguyên, chữ géométrie (hình học) trong tiếng Hi Lạp lại có nghĩa là đo đạc đất đai. Đối với các nhà toán học Cổ Hi Lạp, không có gì mâu thuẫn giữa hai khái niệm, bởi vì trong quan niệm của họ, khoa học là một thể thống nhất, nó phải vừa giải thích vừa làm chủ Thiên nhiên, nhà hình học và nhà trắc địa đều làm cùng một nghề. Còn thế nào là « nghiên cứu các hình, dạng » ? Hình dạng thì vô số, không thể nào kê khai cho xuể, mà có làm được cũng vô ích. Cho nên cách xử lí tự nhiên nhất là làm thế nào xếp loại theo những tiêu chuẩn nhất định, cũng như nhà thực vật học, nhà côn trùng học xếp cây cỏ, sâu bọ thành loại lớn, loại nhỏ, nhánh, họ... Toán học quan tâm tới cấu trúc, nên các nhà toán học xếp loại các đối tượng họ nghiên cứu bằng cái mà họ gọi là « quan hệ tương đương », tức là những quy tắc biến đổi một đối một mà vẫn giữ nguyên các cấu trúc (phép « đẳng cấu ») ; theo cách xếp loại như vậy, hai cá thể « đẳng cấu » có thể được đồng nhất hoá với nhau (đồng nhất hoá, chứ không đồng nhất, không « bình đẳng », nói rõ như vậy để trả lời những đồ đệ « dậy non » của Jean-Paul Sartre). Ta hãy lấy « analysis situs » của Poincaré làm ví dụ : các cơ cấu mà tô pô học nghiên cứu là những « không gian tô pô », nghĩa là những tập hợp trong đó người ta có thể định nghĩa khái niệm « lân cận », nói nôm na : thế nào là hai điểm « gần » nhau ; một phép đẳng cấu do đó là một phép biến đổi một đối một giữ nguyên được sự « gần nhau » ấy (hai điểm A và B « gần nhau » được biến thành hai điểm A’ và B’ cũng « gần nhau »). Phép đẳng cấu giữa hai không gian tô pô được gọi là phép « đồng phôi » (homéomorphisme), hay nôm na hơn, phép biến dạng liên tục (déformation continue). Cho nên người ta thường gọi tô pô học bằng cái tên nôm na gợi hình là « hình học cao su » : hai cái hình làm bằng màng cao su, thí dụ hình tròn và hình bầu dục, có thể biến hoá cái nọ thành cái kia bằng cách co kéo cái màng cao su mà không làm rách hay phải cắt nó. Có rất nhiều thí dụ dễ hiểu về không gian tô pô. Ai cũng biết những « không gian thực n chiều » mà kí hiệu là Rn : khi n=1 đó là đường thẳng, 2 chiều mặt phẳng (ở trường học, ai chẳng học trên đường thẳng, mỗi điểm được xác định bằng 1 hoành độ, trên mặt phẳng, mỗi điểm được xác định bằng 2 toạ độ), không gian R3 là không gian « quanh ta » mà cơ học Newton nghiên cứu, R4 là không – thời gian của thuyết tương đối (hẹp)... Hình dung ra không gian nhiều chiều cũng không có gì khó : chẳng cần đọc tiểu thuyết viễn tưởng, ta hãy xem sổ hộ tịch trong đó người ta kê khai tên họ, giới tính, tuổi, chiều cao, quốc tịch, tổng cộng là 5 tham số (được mã hoá thành số), mỗi cá nhân với « 5 toạ độ » ấy là một « điểm » trong không gian R5 ! Và để xếp loại các không gian tô pô (không phân biệt các không gian « đồng phôi »), người ta căn cứ vào những cái « bất biến », tức là những tính chất bất biến qua những phép đồng phôi. Để xếp loại côn trùng, các nhà động vật học đếm số chân, số cánh... Đối với các không gian Rn , tất nhiên nhà tô pô học nghĩ tới chiều kích của chúng, và đúng như vậy, một định lí nổi tiếng của Whitney (đầu thế kỉ XX) cho biết rằng hai không gian Rn và Rp đồng phôi với nhau nếu và chỉ nếu n=p. Định lí này dễ cảm nhận bằng trực quan, nhưng muốn chứng minh nó, phải có trình độ tối thiểu là MA đại học về toán, điều này cho thấy sự thâm sâu của những bài toán tô pô học. Một con số – chiều kích n – cũng đủ làm đặc trưng cho các không gian Rn, song sẽ quá ngây thơ nếu ta tưởng rằng đối với các không gian tô pô cũng đơn giản như vậy. Thực ra bài toán đặt ra quá tổng quát, chẳng cần nghiên cứu Sartre (làm sao mà hai cá nhân có thể « bình đằng », « bằng » nhau được ?) cũng có thể nhận thấy. Vì thế, các nhà tô pô học, theo chân Poincaré, sẽ khiêm tốn tự giới hạn trong « các đa tạp tô pô n chiều » mà đại khái ta có thể coi là các « hình » trong hình học đã nói ở trên. Một đa tạp n chiều như vậy là một không gian tô pô « đồng phôi cục bộ » (nghĩa là ở vùng lân cận của mỗi điểm ; chứ nếu « đồng phôi toàn bộ » thì chẳng còn gì để nói nữa) với không gian Rn. Xin lấy một ví dụ để bạn đọc có thể hình dung : Mặt Đất chúng ta đang sống trên đó « nằm trong » không gian (3 chiều) R3, nhưng ở cục bộ mỗi điểm trên địa cầu, nó đồng phôi với R2 (một mặt phẳng, tức là một đa tạp 2 chiều). Nói nôm na : đứng ở bất cứ nơi nào trên Mặt Đất, người quan sát cũng có cảm tưởng nó là mặt phẳng (chứ không phải mặt cầu). Nhưng ai chẳng biết rằng Mặt Đất không phải là mặt phẳng ! Magellan đã chứng minh điều đó khi ông đi một vòng quanh địa cầu. Đối với nhà tô pô học, hiển nhiên là mặt cầu không thể đồng phôi với mặt phẳng : mặt cầu là compac, mặt phẳng không. Tính compac rất khó giải thích bằng ngôn ngữ hàng ngày, song có thể nói thế này : một không gian tô pô nằm trong một không gian Rn, nếu nó compac thì tất nhiên nó « đóng kín, bị chặn » (hai từ này có thể hiểu theo nghĩa đời thường).

Hai kiểu bất biến vừa nói ở trên – chiều kích và tính compac – được coi là « sơ cấp » vì chúng liên quan tới khái niệm lân cận gắn liền với định nghĩa đa tạp. Một trong những đóng góp quan trọng của Henri Poincaré là đề ra một bất biến kiểu mới, là khái niệm « nhóm cơ bản », một khái niệm liên quan tới lí thuyết nhóm. Một đa tạp sẽ được gọi là « liên thông đơn thuần » nếu nhóm cơ bản chỉ vỏn vẹn có một phần tử. Để cảm nhận bằng trực giác khái niệm « liên thông đơn thuần », ta hãy hình dung một mặt cong trên đó ta vẽ một « đường vòng », một thứ « dây thòng lọng » : nếu ta có thể « rút dây », thắt nó nhỏ dần, cho đến khi nó nhỏ tí, thành một điểm mà sợi dây vẫn nằm hoàn toàn trên mặt cong, thì mặt cong có tính « liên thông đơn thuần ». Nói khác đi, một đa tạp liên thông đơn thuần nếu bất cứ đường vòng nào nằm trong đa tạp có thể được biến dạng liên tục thành một điểm. Ta hãy lấy vài ví dụ đa tạp 2 chiều nằm trong không gian 3 chiều R3 : mặt phẳng, mặt cầu rõ ràng là liên thông đơn thuần, ngược lại mặt xuyến (thí dụ nhưng cái săm bánh ô tô hay bánh xe đạp) không liên thông đơn thuần (dây thòng lọng buộc quanh cái săm, « xuyên qua lỗ ở giữa », không thể « thắt » nhỏ thành một điểm mà không cắt đứt cái săm). Như vậy là mặt phẳng, mặt cầu và mặt xuyến là 3 đa tạp không đồng phôi đôi một với nhau : mặt phẳng và mặt cầu vì tính compac, mặt cầu và mặt xuyến vì tính liên thông đơn thuần. Mấy thí dụ trực quan này cho ta hình dung cách đặt vấn đề của ức đoán Poincaré.

THURSTON, HAMILTON, PERELMAN và KHƯU (YAU)

Trước khi Perelman thượng đài, tình hình bài toán Poincaré là như thế nào ? Trường hợp 2 chiều đã được Riemann lí giải từ trước khi Poincaré sáng lập ra tô pô học (tất nhiên, do đó, Riemann dùng một ngôn ngữ khác). Từ Poincaré trở đi, bộ môn này đã phát triển tột bực, tích luỹ một khối lượng những khái niệm, định lí nhờ đó Stephen Smale đã chứng minh được ức đoán Poincaré cho tất cả các đa tạp chiều kích bằng 5 hay lớn hơn (huy chương Fields 1961), sau đó Michael Freedman thanh lí trường hợp chiều kích 4 – cũng lạ là trường hợp này phức tạp hơn về mặt kĩ thuật – (huy chương Fields 1982) (5). Còn trường hợp chiều kích 3 vẫn « trơ gan cùng tuế nguyệt », dường như ở cấp độ của vũ trụ vật lí (chúng ta nên nhớ vũ trụ Einstein là một đa tạp 4 chiều, tính compac của một đa tạp nằm trong vũ trụ này tuỳ thuộc vào tỉ trọng của vật chất chứa đựng trong đó), khó khăn không chỉ đơn thuần là những khó khăn toán học. Bao giờ cũng vậy, tình hình khai thông là nhờ có sự đột phá về quan niệm. Đầu tiên là do William Thurston (huy chương Fields 1982) đề ra một cách phân loại các đa tạp 3 chiều. Ở đây, ta lại gặp một tình huống thường xảy ra, bài toán hóc búa, vì quá đơn lẻ, được lồng vào một lí thuyết bao quát hơn, mở ra những viễn tượng mới. Thurston đề ra mộc ức đoán mới, gọi là ức đoán về sự hình học hoá, theo đó tổng cộng có 8 kiểu đa tạp 3 chiều ; một trong 8 kiểu đó là kiểu « mặt cầu » 3 chiều nói tới trong ức đoán Poincaré. Song tính chất bao quát của ức đoán Thurston dường như làm cho nó ở ngoài tầm với của những lí thuyết hiện tồn (cũng như ở ngoài tầm với của khả năng phổ biến khoa học : từ nay trở đi, độc giả cho phép chúng tôi dùng nhiều ngoặc kép). Một trong những lí thuyết đó là « tô pô học vi phân », nhờ đó người ta đặt thêm lên các đa tạp một cấu trúc nữa để có thể áp dụng các phương trình vi phân riêng. Chính trong phương hướng mới này mà trong thập niên 1980, Richard Hamilton đã tạo ra sự khai thông cuối cùng với khái niệm « dòng chảy Ricci », một phương trình tương tự như phương trình quen thuộc trong vật lí học : phương trình nhiệt của Laplace. Sự truyền dẫn của « dòng Ricci » trên đa tạp cho phép phát hiện những « điểm kì dị ». Chương trình Hamilton đề nghị thanh lí những điểm kì dị đó bằng « phẫu thuật », một kĩ thuật quen thuộc đối với giới tô pô học, song khó khăn lớn ở đây là không chắc gì cuộc phẫu thuật này lại không tạo ra những điểm kì dị mới, và cứ như thế, quá trình này trở thành liên hồi bất tận. Ngược lại, nếu cuộc phẫu thuật thành công, thì ức đoán Thurston được chứng minh, và đương nhiên, cả ức đoán Poincaré. Chính trong thời gian sang Mĩ nghiên cứu sau khi đỗ tiến sĩ mà Perelman đã được biết chương trình Hamilton, và đã đến gặp Hamilton để được ông giải thích tường tận. Hình như Perelman đã tự « coi như là môn đệ » của Hamilton, một điều rất hiếm, chứng tỏ Perelman khá mến mộ Hamilton. Thực ra, hình như ngay từ đầu « Grisha » đã chắc mẩm dòng chảy Ricci là cái chìa khoá, và ông không hề cải chính rằng mình trở lại St Petersburg là để tiến công vào chương trình Hamilton. Ông đã bỏ ra 8 năm trời, và công trình này làm ta liên tưởng tới cuộc chiến đấu đơn độc của Wiles để chứng minh định lí lớn của Fermat. Câu chuyện lẽ ra đến đây là kết thúc. Nhưng không, trước tiên là vì Perelman không chịu tôn trọng luật chơi. Bởi vì các mệnh đề toán học, một khi đã được chứng minh rồi, trở thành những chân lí tuyệt đối (trong khuôn khổ những tiên đề nhất định), cho nên bài chứng minh nhất thiết phải được các chuyên gia kiểm tra kĩ lưỡng rồi được công bố để bất cứ nhà toán học nào cũng có thể tìm đọc, và nếu muốn, thì kiểm tra lại. Ba bài viết mà Perelman đưa lên mạng internet không tuân thủ khuôn phép ấy : một mặt, Perelman không gửi cho một tạp chí để chúng được kiểm tra, thẩm định ; mặt khác, đó không phải là một bài chứng minh đầy đủ, mà chỉ là những phác thảo (tuy khá chi tiết) đưa ra các nguyên tắc và nét lớn, bỏ qua những khó khăn kĩ thuật đôi khi khá quan trọng. Không ai nghi ngờ rằng nếu Perelman chịu khó thì ông sẽ hoàn tất, nhưng phải bao nhiêu nỗ lực và thời gian ? Song ý nghĩa khoa học (và, khốn thay, tác động của media) quan trọng đến mức cộng đồng toán học lần này chấp nhận không làm đúng các thủ tục một cách nghiêm ngặt. Ngoài các xêmina và các nhóm làm việc thường vẫn được tổ chức như trong các trường hợp tương tợ (tại Princeton, Lyon...) để thảo luận về các kết quả của Perelman, đã có hai sáng kiến vượt ra khỏi thông lệ, độc lập với nhau, với những động cơ khác nhau, đã được tiến hành và đi tới kết luận tích cực. Một mặt là viện Clay rất muốn trao giải đầu tiên (quảng cáo mà) cho một « bài toán thiên niên kỉ », nên đã cử hai chuyên gia về tô pô học vi phân, là John Morgan (trường đại học Columbia, đã nói ở trên) và Gang Tian (Điền Cương, viện MIT) tập trung toàn phần thời gian vào việc thẩm định các bài viết của Perelman, và biên tập toàn bộ các phần chứng minh với đầy đủ chi tiết. Họ đã hoàn thành công việc và kết quả là một cuốn sách 473 trang sắp sửa được Viện Clay xuất bản. Mặt khác, sau 3 năm làm việc, hai nhà toán học Trung Quốc, Xiping Zhu (Chu Hi Bình) và Huaidong Cao (Tào Hoài Đông), dưới sự « huấn luyện » của nhà hình học Shing-Tung Yau (Khưu Thành Đồng, huy chương Fields 1982), vừa công bố trên tạp chí Asian Journal of Math (cũng phải nói rõ : do họ Khưu làm đồng chủ biên) một bài viết 318 trang để chứng minh ức đoán của Thurston, « dựa trên » những ý tưởng của Hamilton và Perelman (chữ của họ). Cần nói rõ, theo tập tục của giới toán học, một bài chứng minh chỉ được coi là « nguyên khôi » nếu nó được thực sự tìm ra lần đầu tiên, hoặc là nó lấp được một lỗ trống hoặc sửa lại một sai lầm thực sự của một bài chứng minh trước đó (trường hợp thứ nhì này đã xảy ra với bài chứng minh định lí Fermat của Wiles, có một lỗ trống đã được học trò của Wiles là Richard Taylor bổ khuyết, vì vậy định lí này từ nay mang tên chính thức là định lí Wiles-Taylor). Nhưng trong câu chuyện đang bàn, theo ý kiến của các nhà chuyên môn, bài viết của Tào và Chu hoàn toàn không thể xếp vào hai trường hợp nói trên. Cũng như cuốn sách của Morgan và Điền Cương, nó chỉ có thể được coi là một công trình soi sáng (công phu) công lao của Perelman. Tất cả chuyện này lẽ ra chỉ gây sóng gió trong chén trà của giới chuyên môn nếu như, phía Trung Quốc không làm ầm ĩ trên báo đài : đầu tháng 6.2006, hai tháng trước Đại hội Madrid, Khưu Thành Đồng đã tổ chức họp báo để nói về việc chứng ming ức đoán Poincaré tại Viện toán học Bắc Kinh. Ông viện trưởng họ Khưu không ngần ngại phân phát công lao như sau : 50% về phần Hamilton, 25% về phần « người Nga Perelman », 30% về người Hoa – một con toán cộng đơn giản cho thấy nhà hình học họ Khưu chắc không phải là nhà lí thuyết số. Đến cuối tháng 6, ông Khưu lại tổ chức một « sô » hội nghị vật lí học ở Bắc Kinh, với sự hỗ trợ của nhà cầm quyền Trung Quốc và sự tham gia của những đại gia như Stephen Hawking (« nhà vật lí thiên văn ngồi xe lăn »), để trình bày trong một phiên họp khoáng đại một báo cáo về... ức đoán Poincaré, công lao của hai môn đệ họ Tào và họ Chu, và nói đây là một thành tựu vĩ đại của học thuật Trung Quốc. Phải nói là họ Khưu, sinh trưởng hầu như ở Hồng Kông (bố mẹ ông đã chạy trốn Giải phóng quân Trung Hoa năm 1949, khi Khưu mới 5 tháng), làm việc ở Hoa Kì, sau khi được giải Fields năm 1982 đã trở thành một ông quan đại thần của nền khoa học Trung Quốc, đầu óc « đại hán » cũng chẳng thua ai. Giới toán học khó chấp nhận cách hành xử thiếu đạo đức khoa học như vậy. Philip Griffiths, nhà hình học kiệt xuất, người đã giúp Khưu rất nhiều trên đường công danh, đã phải lên tiếng : « Chính trị, quyền lực và những trò ma giáo không có chỗ đứng chính đáng trong cộng đồng chúng ta, chúng đe doạ sự toàn vẹn tinh thần của toán học ». Khi quyết định trao giải cho Perelman mặc dầu biết rằng Perelman từ chối, có lẽ Uỷ ban Fields cũng không muốn nói gì hơn.

Đỗ Thống 
(Kiến văn dịch từ nguyên tác tiếng Pháp)

Nguồn: Facebok Nam Nguyen

 




#724079 IMO short list (problems+solutions) và một vài tài liệu olympic

Gửi bởi tritanngo99 trong 22-07-2019 - 14:54

IMO 2019 (problem+solution): https://www.imo2019....AZuyd2-uBiSH9cY




#723839 Thiên tài toán học Srinivasa Ramanujan: Một công thức lạ

Gửi bởi tritanngo99 trong 17-07-2019 - 06:07

Thiên tài toán học Srinivasa Ramanujan: Một công thức lạ

16/07/2019 07:20 - Lê Quang Ánh- tiasang.com.vn

Với Hardy, toán học đòi hỏi nhiều ở tính chính xác và tính hệ thống chặt chẽ thì Toán học của Ramanujan dựa trên trực giác và đôi khi mang tính thần bí khó giải thích.

ramanujan%20A1%201.jpg
Tượng nhà toán học Ramanujan. Nguồn ảnh: The Hindu


Một bức thư lạ lùng

 

Ngày 31 tháng 1 năm 1913, nhà Toán học G.H. Hardy1, giáo sư tại trường Đại học Cambridge, London, nhận được một phong thư khá dày, từ một địa chỉ nào đó ở tận miền Nam Ấn-Độ xa xôi. Tác giả bức thư tự giới thiệu như sau:

“Thưa ông,

Tôi xin phép được tự giới thiệu tôi là thư ký kế toán hãng Port Trust ở bến cảng Madras, lương 20 bảng Anh một năm. Bây giờ tôi được 23 tuổi,…”.

Tiếp theo là 9 trang với hàng trăm công thức Toán, có công thức nhà Toán học Hardy biết là đúng, có công thức nhà Toán học chưa thấy bao giờ, không có một lời chứng minh hoặc giải thích nào đi kèm cả. Cuối thư có những hàng sau đây:

“Tôi nghèo, nếu ông tin tưởng ở giá trị những gì tôi viết ở đây, tôi muốn nhờ ông cho công bố chúng. Tôi hoàn toàn tin tưởng ở những lời hướng dẫn của ông.  Tôi xin lỗi đã làm phiền ông.”

Có quá nhiều công thức lạ, nhưng đáng ngạc nhiên nhất là khởi đầu mấy trang Toán có công thức: 1 + 2 + 3 + 4 +….=  - 1/12 )

Ai cũng biết tổng các số dương không thể là một số âm, tổng của các số nguyên không thể là một phân số được.  Hơn nữa tổng của chuỗi số này bằng vô cực, sao bằng một số hữu hạn được? Có gì lầm lẫn ở đây không? Nhìn qua một số công thức phức tạp nhưng chính xác trong phần sau, nhà toán học Hardy không thể giải thích cái sai ở công thức đầu tiên này.

Thì ra nhà toán học được xem là “người ngoài hành tinh” Ramanujan ấy đã đi trước chúng ta gần 100 năm khi đưa ra công thức ấy, không một lời giải thích. Ngày nay ta gọi công thức ấy được gọi là tổng Ramanujan và đã được dùng trong lý thuyết dây (string theory), đặc biệt để giải nghĩa hiện tượng được gọi là hiệu ứng Casimir (Casimir Effect) trong cơ học lượng tử. Về phía Ramanujan, mãi về sau ông mới nói với Hardy rằng cố tình đưa ra công thức này lên đầu để gây sự chú ý cho Hardy.

 

Từ một vùng trời xa lạ, thiếu vắng môi trường khoa học

 

Srinivasa Ramanujan (1887 - 1920) sinh tại làng Erode, phía Nam thành phố Tamil Nadu, miền Nam Ấn Độ trong một gia đình nghèo khó. Cha ông làm việc trong một cửa hàng buôn bán nhỏ, mẹ hát trong một ngôi đền. Lên 5 tuổi, Ramanujan được cho đi học tại trường Kumbakonam, một thị trấn gần Madras, nơi gia đình đang sinh sống. Mặc dầu không được học một cách có hệ thống, nhưng Ramanujan sớm thể hiện một khả năng về toán một cách kỳ lạ: Khi mới 12 tuổi cậu có thể giải được nhiều bài toán về Lý thuyết số và Giải tích và có thể nghĩ ra những ý tưởng toán học trong một khung cảnh hoàn toàn không được kết nối với cộng đồng khoa học xung quanh.

Năm 1902 (15 tuổi), học được từ trong sách phương pháp giải phương trình bậc ba của các nhà Toán học Ý thế kỷ 16, Ramanujan tìm ra được cách giải phương trình bậc bốn theo cách riêng của mình. Rồi cậu lao vào giải phương trình bậc năm nhưng không có kết quả, vì đâu biết rằng phương trình bậc năm không thể giải được bằng căn thức (Abel, Galois).

Tốt nghiệp trung học vào năm 1904, Ramanujan được tặng thưởng giải Rao cho học sinh có kết quả xuất sắc trong việc học toán và nhận được học bổng để vào học Đại học Công lập Kumbakonam, ở đó Ramanujan đạt kết quả kỳ diệu về toán học, nhưng tỏ ra không có năng lực gì ở các môn học còn lại, vì vậy Ramanujan mất học bổng. Chàng tự ý bỏ đi sang một thị trấn khác và sau đó xin vào học tại Đại học Pachaiyappa ở Madras. Cũng như ở trường trước, kết quả ở các môn học khác quá kém và cũng vì sức khỏe có vấn đề, chàng rớt trong kỳ tốt nghiệp và đã trình cho một số giáo sư ở trường đại học địa phương một vài kết quả của công trình nghiên cứu của mình để có được thư giới thiệu cần thiết khi đi xin việc. Công trình của chàng làm các giáo sư quá đỗi ngạc nhiên tới mức lúc đầu không tin là nghiên cứu độc lập của chàng. Cho đến khi chàng chỉ cho họ thấy làm thế nào chàng có được các kết quả ấy, thì họ mới hiểu rằng chàng không phải là người giả mạo, và họ viết cho chàng những thư giới thiệu nồng nhiệt, đôi khi có kèm thêm một chút tiền trợ giúp để cho chàng có thể tiếp tục nghiên cứu toán học.

Ramanujan cho đăng trên tờ Journal of Indian Mathematical Society (Báo của Hội Toán học Ấn Độ) một bài toán thách đố các nhà Toán học tìm ra cách giải. Câu hỏi là tìm kết quả của chuỗi diễn tả bởi các căn thức lồng vào nhau sau đây:

Untitled-1_1.jpg

 

Sáu tháng trôi qua, không có một lời giải nào được gửi tới, vì vậy Ramanujan phải tiết lộ đáp số: Đó là số 3.

Mãi tới năm 1912, cuối cùng thì Ramanujan cũng tìm được việc làm, một chân thư ký ở công ty Madras Port Trust.  Chàng làm việc hiệu quả tới mức còn dư thời gian để nghiên cứu thêm toán và công bố thêm một số bài báo trên tờ báo Toán học địa phương. Nhìn thấy tài năng sáng chói của chàng, một số bạn và những người cộng tác đem công trình của chàng gửi cho một số nhà Toán học người Anh xem, hy vọng tìm được sự ủng hộ cho người bạn trẻ của họ. Bất hạnh thay, mọi nỗ lực đều không có hồi âm.

Tháng 1 năm 1913, Ramanujan viết một bức thư cho G.H. Hardy kèm theo một bài dài 9 trang, nội dung là hơn 100 công thức lấy từ công trình của mình.

Hardy sau khi xem xong bức thư đã nghĩ rằng ai đó chép lại một bài báo của một nhà Toán học nào đó trong một tạp chí Toán học mà không ghi nguồn. Ông nhận ra một vài kết quả như là hệ quả đã được người khác tìm ra và được phổ biến ở phương Tây. Còn một số công thức hoặc định lý khác ông chưa hề thấy bao giờ. Khi đọc lại mấy trang này một lần nữa, ông nhận ra có một số kết quả ông không hiểu, dẫn xuất từ việc khảo sát chuỗi số siêu bội (hyper-geometric series) mà trước đây Euler và Gauss có nghiên cứu.  Hardy quá ấn tượng và ngạc nhiên, sau này ông kể lại: “Những định lý này chinh phục tôi hoàn toàn. Từ trước tới giờ tôi chưa thấy những điều như thế này bao giờ cả.”.  Những định lý này phải đúng thôi, ông kết luận: “Bởi vì nếu chúng không đúng, thì không một ai có đủ trí tưởng tượng để phát minh ra chúng.”

Hardy đem những gì Ramanujan đã viết cho các đồng nghiệp của ông xem, và họ cũng ngạc nhiên không kém. Rồi ông viết thư hồi âm cho Ramanujan, nói rằng ông rất quan tâm đến công trình của chàng và yêu cầu tác giả bổ sung chứng minh cho một vài định lý trong bảng công thức ấy. Ramanujan như nổ tung vì vui sướng khi nhận được thư trả lời, rồi ông viết cho Hardy: “Tôi như tìm được tình bạn ở nơi ông, vì ông là người đã đọc những điều tôi viết một cách có thiện cảm.”  Sau cùng thì Hardy mời Ramanujan tới Đại học Cambridge. Trước lời mời của Hardy (nhân danh Đại học Cambridge), Hội đồng Giáo Dục địa phương quyết định tài trợ cho Ramanujan một ngân khoản để ông làm việc tại Đại học Madras, hy vọng giữ ông ở lại Ấn Độ.  Cha mẹ của Ramanujan cũng lại chống đối việc ông đi Anh, cho nên ông buồn bã từ chối lời mời của Hardy. Hardy thất vọng, quan hệ giữa ông và Ramanujan nguội đi. Một thời gian sau, Hardy cố thử mời Ramanujan một lần nữa. Lần này thì Ramanujan sẵn sàng bởi vì mẹ của Ramanujan nằm mộng thấy một vị thần linh nói rằng nên cho con trai bà rời khỏi nhà.

 

Sự va chạm giữa hai thế giới

 

Ngày 17 tháng 3 năm 1914, Ramanujan lên chiếc tàu thủy mang tên Nevasa rời Madras. Tàu đến London sau gần một tháng. Tại Cambridge, ông ở gần phòng của Hardy. Hai người gặp nhau hằng ngày đàm đạo về những định lý thú vị của Ramanujan. Trước đó, Hardy nhận được từ Ramanujan hơn 100 công thức, nay Ramanujan lại mang qua thêm nhiều công thức mới nữa. Nhìn qua tất cả, Hardy có thể nhận thấy một số định lý đã được biết rồi, một vài định lý thì ông cho là sai, nhưng có nhiều định lý quả là những phát hiện mới.


ramanujan%20A2.jpg
Căn nhà nhỏ nơi Ramanujan sống cùng cha mẹ ở Kumbakonam, Ấn Độ. Ảnh: Deccan Herald.


Hardy và người đồng nghiệp lâu năm John Edensor Littlewood  hết sức ngạc nhiên trước những công thức “đột phá” của chàng thanh niên đến từ một vùng trời xa lạ, thiếu hoàn toàn môi trường khoa học.  Littlewood và Hardy cùng so sánh chàng thanh niên thiên tài này với Euler và Jacobi2. Tuy nhiên cả hai nhận ra rằng, có thể do tự học, chàng tỏ ra thiếu kiến thức nền tảng ở một số lĩnh vực. “Có nên chăng khi phải dạy cho chàng thanh niên này một số phần Toán hiện đại.  Sự giới hạn kiến thức của chàng ở một số nơi cũng đáng ngạc nhiên như sự phong phú và sâu rộng kiến thức ở một số nơi khác”, Hardy nói. Littlewood được giao công việc hướng dẫn Ramanujan học tập, bổ sung kiến thức nền tảng mới, cũng như cách thức trình bày lý luận Toán học chặt chẽ hơn.  Littlewood viết: “Công việc này thật sự khó bởi vì mỗi khi tôi trình bày một vấn đề gì cho Ramanujan mà tôi nghĩ là cần, thì chính tôi bị anh đưa đi xa, ra khỏi dự tính ban đầu của tôi.” Ramanujan cùng làm việc với Hardy và Littlewood ở Cambridge trong 5 năm. Ông đã công bố một phần của những khám phá mới của ông trong thời gian này.

Tuy nhiên, cuộc sống và cách thức làm việc của Hardy và Ramanujan hoàn toàn khác nhau nếu không muốn nói là đối chọi nhau. Họ cộng tác với nhau trong sự va chạm của hai nền văn hóa và hai cá tính khác nhau. Trong khi Hardy là người vô thần thì Ramanujan chìm đắm trong tôn giáo (đạo Hindu), từ tư tưởng cho đến cuộc sống hằng ngày. Trong khi với Hardy, toán học đòi hỏi nhiều ở tính chính xác và tính hệ thống chặt chẽ, thì toán học của Ramanujan dựa trên trực giác và đôi khi mang tính thần bí khó giải thích. Trong thời gian này, Littlewood, người phụ trách hướng dẫn cho Ramanujan, phải “xếp bút nghiên theo việc đao cung” do Thế chiến Thứ nhất đã đến giai đoạn gay gắt nhất, Hardy thay thế vai trò của Littlewood trong việc hướng dẫn Ramanujan đi đúng đường (tính chính xác, tính hệ thống), thay vì triển khai Toán học chỉ dựa trên trực giác và cảm hứng (inspiration) mà Ramanujan vẫn thường làm.

Tháng 3 năm 1916, Ramanujan được trường Đại học Cambridge trao bằng Tiến sĩ Toán vì những thành quả trong nghiên cứu về Lý thuyết số. Một phần của nghiên cứu này là một bài báo dài khoảng 50 trang được đăng trong Proceedings of the London Mathematical Society (Kỷ yếu của Hội Toán học London). Hardy và một số nhà Toán học đương thời nhận xét rằng bài báo về Lý thuyết số này quá độc đáo. Qua đó, người ta xác nhận thêm một lần nữa tài năng thiên phú đặc biệt của Ramanujan.

Cuối năm 1917, ông được bầu làm thành viên của Hội Toán học London.  Năm 1918, ông được vinh dự trở thành thành viên của Hội đồng Hoàng gia Anh (Fellow of The Royal Society), năm ấy ông 31 tuổi và là thành viên trẻ nhất kể từ ngày Hội đồng được thành lập vào năm 1660.

Suốt cuộc đời ngắn ngủi, Ramanujan luôn luôn bị phiền nhiễu vì vấn đề sức khỏe của mình, nhất là trong thời gian 5 năm sống tại Anh. Ở đây khí hậu ẩm và lạnh khác với khí hậu nóng và khô ở quê hương ông miền Nam Ấn Độ. Thêm vào đó là chế độ ăn uống không đầy đủ. Thời kỳ này là thời kỳ của Thế chiến Thứ nhất 1914 – 1918, thực phẩm không những khan hiếm mà còn không đầy đủ cho chế độ ăn uống kiêng khem của ông (ông tự đi mua thực phẩm và tự nấu ăn ở nhà theo chế độ riêng, phù hợp với tôn giáo của mình). Sức khỏe ông xấu dần. Cuối năm 1918, người ta phải đưa ông vào bệnh viện với chẩn đoán là kiệt sức vì thiếu dinh dưỡng. Ngoài ra, ông có dấu hiệu bệnh lao đang trên đà phát triển. Tháng 2 năm 1919, ông được đưa về quê hương.  Một năm sau, năm 1920 ông qua đời, khi ấy ông mới vừa bước qua tuổi 33.

Ramanujan được mô tả như là con người trầm lặng, nghiêm trang nhưng vui tính. Ông theo hệ phái Ấn Độ giáo chính thống, nữ thần Namagiri Thayar là nữ thần của gia đình ông.  Ông tin rằng chính vị nữ thần này đem lại niềm cảm hứng cho ông trong khi nghiên cứu Toán học Ông nói: “Đối với tôi, một phương trình chỉ có ý nghĩa khi nó phản ảnh một ý tưởng của Thượng đế.” 

 

Theo giáo sư Bruce C. Berndt, trường Đại học Illinois, Ramanujan đã công bố 37 bài báo và rất nhiều công thức được ông ghi chép trong bốn cuốn sổ mà một cuốn nay đã thất lạc. Ước chừng trong những sổ ghi chép ấy có khoảng 4000 công thức (hoặc định lý), hầu hết không chứng minh. Từ đó đến nay một số lớn công thức đó đã được chứng minh, tạo hứng thú tìm hiểu cho một số nhà Toán học thế hệ sau.

 

---------

Chú thích:

1 Hardy là tác giả cuốn sách giáo khoa nổi tiếng thời ấy:  cuốn A Course of Pure Mathematics. Ngoài ra ông còn cộng tác với nhà Toán học tài năng John Littlewoodnghiên cứu nhiều đề tài về tính toán, lý luận, và giải tích thuần lý.

2 Carl Gustave Jacobi (1804- 1851), một nhà Toán học người Đức, có nhiều đóng góp quan trọng nhiều lãnh vực: Hàm số elliptic, Phương trình vi phân, Lý thuyết số,…

Tài liệu tham khảo

1Aczel, Amir.  A Strange Wilderness. Sterling New York.  2011.

2. Chaitin, Gregory. Less proof, more truth. New Scientist (2614).

3. Kanigel, Robert.  The Man Who Knew Infinity: A Life of the Genius Ramanujan.  Simon and Schuster.  2016.

4. Ramanujan, Srinivasa (1887–1920), mathematician.   Oxford Dictionary of National Biography, September 2004 (Oxford University Press).

5. Neville, Eric Harold. Srinivasa Ramanujan. Nature. 149. 1942.

6Ono, Ken; Aczel, Amir D.  My Search for Ramanujan: How I Learned to Count. Springer. 2016.

7. https://en.wikipedia...ivasa_Ramanujan

8. https://medium.com/c...12-a8cc23dea793

 




#723583 David Hilbert- Nhà Toán học thông thái cuối cùng của thế kỷ 20

Gửi bởi tritanngo99 trong 07-07-2019 - 11:22

David Hilbert- Nhà Toán học thông thái cuối cùng của thế kỷ 20

05/07/2019 08:00 - Lê Quang Ánh

David Hilbert là nhà Toán học lớn nhất của nhân loại trong nửa đầu thế kỷ 20. Hermann Weyl*.

hilbert%20A1.png
David Hilbert (1862 – 1943) (Archives of P. Roquette, Heidelberg).

Dấu hiệu đầu tiên của nhà Toán học tương lai

David Hilbert sinh ngày 23 tháng 1 năm 1862 tại Wehlau, gần thành phố Königsberg, thủ đô của Đông Phổ.Cha của David là một luật gia làm việc tại tòa hành chánh thành phố này. Ở trường, David học tiếng La tinh, tiếng Hy Lạp, toán học, và nhiều kiến thức xã hội nhưng không hứng thú mấy với hai môn ngoại ngữ bởi vì phải nhớ nhiều và không có chỗ cho suy nghĩ độc lập. Chỉ có môn toán là chàng thích nhất vì nó không đòi phải học thuộc lòng và “dễ học và không cần cố gắng mấy.” Trong khi “mẹ chàng giúp chàng làm bài luận văn đem về nhà, thì tại lớp học, David giúp thầy giáo giảng giải những bài toán khó.” Các thầy giáo nhận xét “David ham thích toán học và tỏ ra có hiểu biết rất sâu sắc về bộ môn này” . Đây là dấu hiệu đầu tiên của một nhà toán học tương lai.

Mùa Thu năm 1880, David Hilbert vào ĐH Königsberg, trường khá tốt về các ngành khoa học của Đức thời bấy giờ. Đối với David Hilbert, điều tốt nhất trong thời gian ở đây là được gặp gỡ, kết thân với hai nhà Toán học trẻ tài năng Hermann Minkowski (1864 - 1909) và Adolf Hurwitz (1859 - 1919).

Mùa Xuân năm 1882, một chàng trai 17 tuổi rụt rè nhút nhát tên là Hermann Minkowski chuyển về trường ĐH Königsberg sau khi học xong năm thứ nhất tại ĐH Berlin.  Mặc dù còn ít tuổi, nhưng Minkowski đã có một giải thưởng về Toán tại ĐH Berlin và có một số thành quả trong nghiên cứu Lý thuyết số. Vừa mới về Königsberg, Minkowski lại được công bố thắng giải thưởng lớn của Hàn lâm Viện khoa học Paris năm 1883 (cùng chia giải thưởng với nhà Toán học người Anh Henry Smith). Tin tức về Minkowski làm chấn động Königsberg. Tài năng toán học của Hilbert cũng vừa ló dạng tại đây, lại xấp xỉ tuổi nhau (Hilbert lớn hơn Minkowski hai tuổi), cho nên hai chàng trai dễ dàng thân thiết, mặc dù cha Hilbert khuyên “không nên quá gần gũi người nổi tiếng.”

Mùa Xuân năm 1884, một giảng viên 25 tuổi tên là Adolf Hurwitz mới được tuyển vào trường. Vừa mới gặp gỡ, Hilbert nhìn thấy ở thầy giáo trẻ này sự khiêm tốn dễ mến và một sự thông minh không lẫn được qua cặp mắt xanh xám long lanh. Hai chàng sinh viên Hilbert và Minkowski mau chóng làm quen với Hurwitz, rồi cả ba trở nên thân thiết. Họ trao đổi, bàn luận gần như đủ khắp các ngõ ngách của toán học.

Cuối Đông năm 1885, Hilbert tốt nghiệp tiến sĩ với luận án về Lý thuyết hàm bất biến. Hurwitz gợi ý Hilbert nên về trường ĐH Leipzig làm việc dưới sự hướng dẫn của nhà Toán học nổi tiếng Felix Klein (1849 - 1925). Sau này Klein kể lại: “Chỉ nghe chàng trai trẻ này giảng bài cho sinh viên là tôi nhận ra ngay đây chính là con người mà toán học đang mong đợi.”

 

Phương pháp có tính cách mạng

 

Paul Gordan (1837 – 1912), nhà Toán học Đức, từng được mệnh danh là “vua các bất biến” đã chứng minh được định lý về tính hữu hạn của các bộ sinh cho các dạng tuyến tính (the finiteness of generators for linear forms), nhưng ông không thể mở rộng bài toán của mình cho những hàm có hơn hai biến. Người ta gọi đây là bài toán Gordan.

Hilbert bắt tay vào nghiên cứu bài toán nổi tiếng này và tháng 12 năm 1888 công bố đầy đủ lời giải. Phương pháp mà Hibert sử dụng hoàn toàn xa lạ, không theo con đường thông thường nên ngay sau đó có nhiều người cho rằng phương pháp “kỳ cục”, “thảm họa”, nhưng sau họ từ từ nhận ra rằng chứng minh của Hilbert không những đúng mà còn có tính cách mạng.

Hilbert là người không có thành kiến về tuổi tác, về chủng tộc, về quốc tịch, và về giới tính. Đối với Hilbert, chỉ có hai loại người, loại làm việc và tạo ra thành quả, và loại không làm gì cả. Ông luôn luôn chấp nhận cái mới, không có thái độ “kẻ cả” coi thường những người chưa có tên tuổi, như một số người nổi tiếng sẵn sàng dè bỉu, phủ nhận những gì họ chưa hiểu hoặc không hiểu.

Trong hai năm sau đó, Hilbert tiếp tục làm việc trên Lý thuyết bất biến. Năm 1892, những đóng góp của ông có thể xem như kết thúc cho việc nghiên cứu lý thuyết này. Ông viết cho Minkowski - khi ấy đang giảng dạy tại ĐH Bonn: “Tôi tin rằng những vấn đề lớn của lý thuyết trường hàm sinh ra bởi những bất biến đã giải quyết xong. Từ nay tôi sẽ từ giã lĩnh vực này.” Nhà toán học trẻ tuổi của chúng ta vừa mới hoàn tất một chủ đề của Toán học mà đã có ngay một vị trí trong cộng đồng toán học Đức và của cả châu Âu. Mục tiêu kế tiếp của ông sẽ là Lý thuyết số đại số (Algebraic number theory).

Ba năm tiếp theo có một số thay đổi quan trọng trong cuộc đời của Hilbert. Năm 1892, ông lập gia đình nhưng bất hạnh là đứa con duy nhất bị thiểu năng trí tuệ từ nhỏ. Adolf Hurwitz, người thầy và cũng là người bạn thân của Hilbert rời khỏi ĐH Königsberg để nhận chức giáo sư thực thụ tại Viện Kỹ thuật Liên bang Thụy Sĩ (ETH), bỏ trống ghế giáo sư thực thụ tại ĐH Königsberg. Hermann Minkowski cũng rời Königsberg để trở thành giáo sư thực thụ tại ĐH Bonn. Bỗng nhiên chỉ còn một mình Hilbert trong bộ ba thân thiết ở lại.

Năm 1893, Hội Toán học Đức (DMV = Deutsche Mathematiker-Vereinigung) giao cho Hilbert và Minkowski viết một báo cáo về Lý thuyết số, công việc phải hoàn tất trong hai năm. Hilbert rất sung sướng nhận công việc này vì đây là cơ hội để ông đặt lại nền tảng cho Lý thuyết số mà tới thời gian ấy vẫn còn một số vấn đề tồn đọng trong cách sử dụng ký hiệu cũng như trong một số chứng minh. Hơn thế, Hilbert còn thấy củng cố Lý thuyết số sẽ là tiền đề để phát triển Lý thuyết số đại số một cách sâu rộng hơn.
 

hilbert%20A2.png
Tòa nhà giảng đường Maximum ở Göttingen, nơi Hilbert làm việc. (xây trong khoảng 1826- 1865).


Thời gian ấy, nhà toán học 31 tuổi của chúng ta được phong giáo sư thực thụ. ĐH Königsberg mặc dù có truyền thống nghiên cứu khoa học rất tốt nhưng vẫn còn nằm ngoài các trung tâm nghiên cứu khoa học thuộc dòng chính của Đức. Hilbert vẫn chờ cơ hội.

Mùa Thu năm 1894, tiếng gọi từ Göttingen đã vọng về tới Hilbert. Giáo sư Heinrich Weber (1842 – 1913) sẽ rời Göttingen để đến Strasburg. Giáo sư Felix Klein, đứng đầu khoa toán tại Göttingen đề nghị cho Hilbert về thế chỗ này.  Klein gửi thư cho Hilbert: “Tôi tin anh sẽ đem về thêm sức mạnh vốn có sẵn tại Göttingen này. Toán học ở đây từ trước tới giờ vẫn phát triển, nhưng nó sẽ phát triển nhanh và rộng thêm nữa khi có anh về.” Giấc mơ của Hilbert nay đã thành sự thực.

 

Một bước dài trong lý thuyết toán học

 

Trường ĐH Göttingen, một trong số ít trung tâm toán học của thế giới của thế giới cuối thế kỷ 19 đầu thế kỷ 20 đón chào David Hilbert vào mùa Xuân năm 1895.

Ta còn nhớ năm 1893, Hội Toán học Đức (DMV) giao cho Hilbert và Minkowski viết một báo cáo về Lý thuyết số.  Công việc của Minkowski có vẻ như bị chậm lại vì một lí do nào đó, trong khi Hilbert đã hoàn tất phần việc của mình và DMV công bố phần Hilbert đã viết xong vào năm 1897.  Đó chính là cuốn sách danh tiếng Die Theorie der algebraischen Zahlkörper (Lý thuyết trường các số đại số).  Hermann Weyl viết về tác phẩm này như sau: “Đây là một hạt ngọc trong tài liệu sách vở toán học. Thậm chí cho tới ngày nay, sau hơn nửa thế kỷ, việc nghiên cứu cuốn sách này vẫn cần thiết cho những ai muốn thấu hiểu lý thuyết về các số đại số.


Hilbert%20anh%203%20thay.jpg
David Hilbert (ngoài cùng bên phải) bên gia đình và bạn bè.


Suốt trong hai năm kế tiếp, Hilbert chỉ nói và viết về các trường số. Bài báo cuối cùng và cũng là bài báo quan trọng nhất của Hilbert về lĩnh vực này công bố năm 1899 nói về lý thuyết mở rộng Abel của các trường số, nền tảng của lớp trường (class fields). Nếu như trước đây Hilbert nói kết thúc việc nghiên cứu Lý thuyết bất biến (đóng vấn đề lại), thì nay với việc nghiên cứu Lý thuyết trường các số đại số, Hilbert đã mở tung cánh cửa này ra.

Thời gian từ 1898 đến 1902, Hilbert chuyển sang nghiên cứu nền tảng của hình học.  Ông bị thu hút bởi ý tưởng tiên đề hóa. Với cách tiếp cận tiên đề hóa, hình học trở thành một hệ thống suy diễn giả định (hypothetico-deductive system).  Không cần thiết phải biết điểm, đường thẳng và mặt phẳng là gì. Những gì cần là thiết lập một hệ thống tiên đề thỏa mãn những điều kiện phi mâu thuẫn (consistency), độc lập (independence) và đầy đủ (completeness). Rồi từ đó người ta có thể lý luận thuần túy hình thức, dẫn ra được những định lý và chứng minh được chúng, chúng có thể áp dụng cho tập hợp những cái ghế, những cái bàn, những hàm số,… Dùng hệ thống lý luận như thế, Hilbert cho thấy Hình học phi Euclid cũng chặt chẽ như Hình học Euclid và cũng chặt chẽ như Lý thuyết số vậy.

Năm 1899, Hilbert xuất bản cuốn Grundlagen der Geometrie (Nền tảng của Hình học). Tác phẩm nhanh chóng nổi tiếng. Henri Poincaré bình luận: “Hilbert đã bước một bước dài trong lĩnh vực lý luận Toán học.” Thật vậy, không những Hilbert đóng góp lý luận chặt chẽ qua phương pháp tiên đề vào lĩnh vực hình học, mà phương pháp tiên đề hóa này và tính chặt chẽ của nó có ảnh hưởng trên nhiều lĩnh vực khác của toán học sau này nữa: Đại số (Nhóm, Vành, Trường), Giải tích (Không gian Hilbert, Không gian Banach),…

Cuối năm 1899, Hilbert mở lớp về phép tính biến phân (Calculus of variations). Nhà Toán học 37 tuổi của chúng ta lúc này thật chín chắn nhưng vẫn còn tràn đầy sinh động như thời ở Königsberg. Ông đã để lại nhiều ấn tượng và sự ngưỡng mộ của học viên. Max von Laue (1879 – 1960), một nhà Vật lý Đức, giải Nobel năm 1914, học trò của Hilbert thời gian này, nói: “Trong tâm trí tôi, con người này là một thiên tài vĩ đại nhất mà tôi từng biết.”

 

Tương lai của Toán học

 

Một trong những danh dự lớn nhất của một nhà Toán học trong suốt cuộc đời là được mời đọc bài diễn văn chính thức trong Đại hội Các nhà Toán học thế giới (ICM) mỗi bốn năm họp một lần.  Đại hội đầu tiên (1896) danh dự ấy dành cho Henri Poincaré.  Đại hội lần thứ hai (1900), danh dự ấy thuộc về David Hilbert, đây là cách mà thế giới công nhận những thành tựu to lớn trong lĩnh vực toán học của David Hilbert. Bài diễn văn của Hibert nổi tiếng trong lịch sử toán học như là một lời tiên tri và khắc họa những gì các nhà toán học sẽ phải làm trong tương lai.

Lịch sử đã cho ta thấy sự phát triển của khoa học là liên tục. Chúng ta biết rằng mỗi thời kỳ có những bài toán mà thời kỳ kế tiếp phải giải, hoặc là để chúng qua một bên, thay thế bằng những bài toán khác. Nếu chúng ta muốn hình dung sự phát triển của toán học trong tương lai gần, chúng ta phải bỏ qua những bài toán còn tồn đọng trong trí và chú ý vào những bài toán mà toán học hôm nay đặt ra cho tương lai phải giải.

Chúng ta đang bước vào thế kỷ 20, đúng là lúc chúng ta phải nhìn ra những bài toán này.  Thật vậy, sự phân chia thế kỷ không những cho phép chúng ta nhìn lại quá khứ mà còn đưa tư tưởng chúng ta vào tương lai.

Vai trò to lớn của các bài toán đối với sự phát triển của toán học và ảnh hưởng của một số bài trên sự nghiên cứu của các nhà toán học là không thể chối cãi được.  Khi mà một ngành toán học nào đó nảy sinh ra nhiều vấn đề thì rõ ràng là ngành toán học đó đang phát triển phong phú.  Ngược lại, ngành toán học nào thiếu vấn đề mới thì, hoặc là nó phát triển chậm, hoặc là nó đang dừng lại (chết). Cũng như trong cuộc sống, con người cần phải có mục đích để theo đuổi, các nhà toán học cũng cần phải có những bài toán để giải. Sức mạnh của nhà toán học thể hiện qua việc nghiên cứu tìm ra lời giải. Rồi sẽ phải có những phương pháp mới, những cách nhìn mới, và các nhà toán học sẽ tìm ra những chân trời mới.”

“Các nhà toán học chúng tôi thường đo lường sự tiến bộ của mình bằng cách đối chiếu những gì mình đã làm được với những vấn đề Hilbert đã đặt ra” - Hermann Weyl.

Hai mươi ba bài toán được Hilbert nêu ra trong dịp này, nay thường gọi là hai mươi ba bài toán Hilbert có một vai trò quan trọng -  là những khúc quanh có tính chất bản lề cho sự phát triển toán hiện đại. “Các nhà toán học chúng tôi thường đo lường sự tiến bộ của mình bằng cách xem xét những gì mình đã làm được đối chiếu với những vấn đề Hilbert đã đặt ra”  - Hermann Weyl.  Danh sách các nhà Toán học đóng góp công sức tìm cách giải các bài toán này hầu hết là những nhà toán học hàng đầu.

Đầu thế kỷ 20, Hilbert giảng dạy về phương trình tích phân và lý thuyết thế vị (potential theory).  Bây giờ ông nổi tiếng đến nỗi sinh viên từ nhiều nơi trên thế giới, kể cả Mỹ, nhiều nhà toán học đã và sẽ thành danh, tìm về Göttingen nghe ông giảng.  Tạp chí Bulletin of the American Mathematical Society (tạp chí của Hội Toán học Mỹ) vừa mới thành lập, thường xuyên đăng bài giảng mới nhất của Hilbert.  Một số Hàn lâm Viện có tiếng bầu ông vào làm thành viên.

Năm 1902, do sự vận động của Hilbert, Minkowski từ Zurich chuyển về Göttingen.  Theo gợi ý của Minkowski, Hilbert bắt đầu chuyển sang nghiên cứu Toán-Vật lý, bộ môn ông cũng rất thích thú và có nhiều khả năng, chỉ sau Lý thuyết số. Riêng Minkowski, từ ngày sang Zurich giảng dạy, ông đã chuyển hẳn sang bộ môn này, và chính Minkowski là người đã đưa thêm chiều thời gian vào không gian ba chiều thông thường của chúng ta thành không-thời-gian (space time) (bốn chiều), làm bệ phóng cho người học trò tên là Albert Einstein, vài năm sau bay vút lên bằng Lý thuyết tương đối (rộng) của mình.

Trong thời gian Thế chiến thứ nhất, Hilbert tiếp tục nghiên cứu về Toán-Vật lý.

Sau Thế chiến thứ nhất, Hilbert chuyển sang nghiên cứu về Nền tảng của toán học (The foundations of Mathematics). Nhưng sức khỏe của Hilbert xấu dần giữa những năm 1920. Từ năm 1928 trở đi, hoạt động nghiên cứu của Hilbert coi như chấm dứt.

Hilbert bắt đầu cuộc sống cô đơn. Trí nhớ của ông kém dần. Khi có khách tới thăm, ông lắng nghe một cách chăm chú, lịch sự, nhưng trả lời vô hồn, không dính dáng gì tới câu hỏi.  Mùa Xuân năm 1943, Hilbert qua đời, thọ tuổi 81.

Ánh sáng đã tỏa sáng từ ĐH Göttingen suốt trong gần nửa thế kỷ, nay đã tắt, và Göttingen chìm trong bầu trời đen tối của Đức Quốc xã.  

----------

*Hermann Weyl (1885 – 1955), nhà Toán học Mỹ gốc Đức, một trong những người sáng lập nên Viện Nghiên cứu Cao cấp Princeton (IAS).

 




#723571 Hệ thặng dư

Gửi bởi tritanngo99 trong 06-07-2019 - 18:07

Cho mình hỏi mình đang học phần hệ thặng dư,các thành viên trong diễn đàn có thể chia sẻ cho mình bài tập về phần này không.Mình lên mạng thì thấy rất ít bài

+ https://www.ias.ac.i...20/03/0206-0216

+ https://s3.amazonaws...mber-theory.pdf

+ http://web.evanchen....uts/CRT/CRT.pdf

+ https://olympiadtrai...-and-tricks.pdf




#723548 IMO short list (problems+solutions) và một vài tài liệu olympic

Gửi bởi tritanngo99 trong 05-07-2019 - 21:44

BDT: https://drive.google...63COt2YobIThGYo




#723547 Tóm tắt bổ đề cơ bản của giáo sư Ngô Bảo Châu

Gửi bởi tritanngo99 trong 05-07-2019 - 21:40

https://drive.google...NgfcS16PWw/view

sketch-1562334051745.png



#723402 Chúc mừng anh WhjteShadow (Đỗ Trọng Đạt )- Phó Quản Trị của diễn đàn VMF

Gửi bởi tritanngo99 trong 29-06-2019 - 20:48

Thủ khoa ngành Toán nhận học bổng tiến sĩ 8,4 tỷ đồng của Mỹ

 

Đỗ Trọng Đạt, chàng trai người Thái Bình đạt học bổng tiến sĩ toàn phần tổng trị giá 8,4 tỷ đồng của Mỹ vừa xúc động đón nhận Bằng cử nhân khoa học tài năng ngành Toán học với tư cách thủ khoa đầu ra của Trường ĐH Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. 

Với điểm số 3.87/4.0, Đạt được vinh danh ở vị trí Thủ khoa đầu ra trong số 299 tân cử nhân của Trường Đại học Khoa học Tự nhiên năm 2019.

 

Đầu năm nay, Đạt đã xuất sắc giành được học toàn phần chương trình Tiến sĩ Thống kê với tổng trị giá 8,4 tỷ đồng cho 5 năm từ Đại học Michagan danh tiếng Hoa Kỳ.

Phát biểu trong buổi nhận bằng cử nhân, Đỗ Trọng Đạt chia sẻ, 4 năm được theo học tại Trường Đại học Khoa học Tự nhiên là quãng thời gian rất hạnh phúc trong cuộc đời.

_20190629_203115.JPG

“Em đã được tri nhận rất nhiều điều từ thầy cô và bạn bè, trong đó có 2 điều vô giá. Đó chính là “Niềm đam mê học tập nghiên cứu” và “Cách học, cách làm, sao cho đúng”.

 

Những năm tháng đại học đã giúp em chiêm nghiệm sự đúng đắn của câu nói rất nổi tiếng trong một bộ phim truyền cảm hứng: “Cứ theo đuổi đam mê, rồi thành công sẽ theo đuổi bạn”.

Hàng ngày đến trường, em được học và tiếp xúc với những thầy cô, những Tiến sĩ, Giáo sư đầu ngành trong các chuyên ngành nghiên cứu cơ bản của Việt Nam. Em luôn cảm nhận được sự tận tuỵ, cống hiến của các thầy cô trong mỗi bài giảng, và điều đó đã phần nào làm bùng cháy lên đam mê trong chính em.

Em biết, những nhà nghiên cứu không phải là những người giàu có hay có địa vị cao nhất trong xã hội. Nhưng với ánh mắt đam mê và hành động miệt mài trong giảng dạy và nghiên cứu, em tin rằng các thầy cô chính là những người rất thành công.

Đó chính là được làm cái mà mình yêu, và yêu cái mình làm. Em hi vọng nguồn năng lượng tích cực của các thầy cô có thể thấm dần vào tâm thức những tân cử nhân để chúng ta luôn đam mê với công việc ta làm trong đời.

_20190629_203058.JPG



Bài học thứ 2 mà Đạt chia sẻ là trả lời câu hỏi: “Làm-sao-để-làm-cho-đúng?”. Khi chúng em là sinh viên năm nhất, thầy cô dạy, học toán hay làm khoa học cũng như luyện võ, nếu luyện không đúng cách là rất dễ “tẩu hoả nhập ma”.

Thực đúng là như vậy. Dưới sự hướng dẫn của thầy cô, chúng em đã học được cách-học-đúng-cách. Mọi công trình vĩ đại đều bắt đầu từ những viên gạch nhỏ bé, mọi định lí đẹp đẽ đều khởi nguồn từ những định nghĩa và tính chất cơ bản.

Với cách học luôn nắm chắc những khái niệm và ý nghĩa từ những cái cơ bản trở đi, chúng em đã có thể từng bước, từng bước, học được những điều to lớn hơn trong môn học cũng như cuộc đời.

Theo Huyền Linh (Dân Trí). Người đăngSơn Phan.



#723302 Tìm điều kiện để P(x) khả quy

Gửi bởi tritanngo99 trong 25-06-2019 - 13:36

Cho mình hỏi bài này:

Tìm a, b, c nguyên, phân biệt, khác 0 để $P(x) = x(x-a)(x-b)(x-c) + 1$ khả quy trong Z[x]

Bạn có thể tham khảo một số tài liệu về đa thức tại đây:

+ File gửi kèm  DA_THUC_3.pdf   170.03K   1820 Số lần tải

+ File gửi kèm  100_Polynomials_Problems_With_Solutions.pdf   149.34K   234 Số lần tải




#723286 Một trong những cái nôi sản sinh IMOer và phát triển phong trào học toán

Gửi bởi tritanngo99 trong 24-06-2019 - 20:30

Tạp chí Toán học và Tuổi trẻ, 45 năm đồng hành cùng bạn trẻ yêu toán

Thứ năm, 17/12/2009 | 11:06 AM

Số lượt xem: 1441

 

 

 Tờ báo Toán học và Tuổi trẻ ra đời năm 1964, khi cuộc kháng chiến chống Mỹ cứu nước của nước ta bước vào giai đoạn mới, chiến tranh lan ra cả miền Bắc. Tờ báo ra đời nhằm phục vụ bạn đọc thanh thiếu niên yêu toán với mục đích “gây không khí sôi nổi, hào hứng học toán trong thanh thiếu niên, đặc biệt là học sinh các trường phổ thông cấp 3”. Ngay từ khi mới ra đời, báo đã được các bạn trẻ hoan nghênh và yêu thích. Từ khắp nơi trên miền Bắc, bạn đọc đã gửi thư về tòa soạn bày tỏ niềm hân hoan sau khi đọc số báo đầu tiên. Một phong trào học toán và giải toán đã được đấy lên trong các trường học, xí nghiệp, cơ quan, công trường, nông trường và quân đội. Những năm đầu tiên, báo ra mỗi tháng một kỳ. Về sau do ảnh hưởng của cuộc chiến tranh ác liệt miền Bắc, báo phải ra hai tháng một kỳ.
 
Năm 1975, đất nước thống nhất, báo mở rộng địa bàn hoạt động ra cả nước. Một phong trào đọc báo và giải bài trên báo Toán học và Tuổi trẻ lại sôi nổi trong các nhà trường của các tỉnh, thành phố mới được giải phóng. Báo trở thành một nguồn tư liệu quý bồi dưỡng học sinh giỏi toán trong điều kiện thông tin còn hạn chế. Những năm khó khăn của thời kỳ bao cấp, các cán bộ của tạp chí và các cộng tác viên đã nhiệt tình chèo chống cho báo ra đều đặn. Nhiều tác giả, nhiều cộng tác viên đã viết bài không có nhuận bút, chọn bài, chọn đề đăng không có thù lao. Những lúc này, bạn đọc yêu Toán chính là niềm động viên lớn lao cho những người làm báo.
 
Tháng 1 năm 1992, báo được chuyển từ Viện Khoa học Việt Nam về Bộ Giáo dục và Đào tạo, giao cho NXBGD trực tiếp quản lý. Báo Toán học và Tuổi trẻ khởi sắc, ra mỗi tháng 1 số và chuyển thành Tạp chí, in 2 màu và đạt số lượng 15.000 bản. Tháng 1 năm 1994, tạp chí tăng thành 20 trang, bìa in 4 màu, ruột in 2 màu và giấy trăng hơn. Tạp chí có thêm nhiều cải tiến về nội dung như mở thêm các chuyên mục Dành cho các bạn THCS, Ống kính cải cách dạy và học toán, Dành cho các bạn chuẩn bị thi vào Đại học, Giới thiệu các kỳ thi Toán của các nước, Giới thiệu sách mới
 
Đến nay, tạp chí đã tăng lên 36 trang, với nội dung phong phú hơn, mở thêm một số chuyên mục như: Diễn đàn dạy và học toán, Tiếng Anh qua các bài toán và cách giải, Nhìn ra thế giới, Toán học muôn màu, Nhiều cách giải cho một bài toán,…
 
Bên cạnh việc xuất bản tạp chí, Tòa soạn còn giới thiệu các chuyên mục chính của tạp chí và trao đổi rộng rãi với bạn đọc trong và ngoài nước trên trang web: http://www.nxbgd.vn/toanhoctuoitre.
 
45 năm qua, Tạp chí đã thực sự gây được không khí sôi nổi học toán và say mê giải toán của học sinh THPT và THCS, giúp đỡ học sinh nâng cao trình độ toán học, nắm vững hơn các kiến thức toán học phổ thông, hướng dẫn học sinh các phương pháp học toán theo hướng độc lập suy nghĩ, tìm tòi sáng tạo. Tạp chí đã trở thành người bạn thân thiết của các học sinh giỏi toán, các giáo viên say sưa với nghề. Rất nhiều trường học đã động viên khen thưởng học sinh có bài giải tốt được nêu tên trên tạp chí. Bằng danh dự của Tạp chí trao cho các học sinh được giải trong các kỳ thi trên tạp chí rất có uy tín với các Sở Giáo dục và Đào tạo, các trường phổ thông trong cả nước.
 
Phát biểu tại buổi lễ, thay mặt Lãnh đạo Bộ, Thứ trưởng Trần Quang Quý ghi nhận và nhiệt liệt biểu dương những thành tích của Tạp chí Toán học và Tuổi trẻ đã đạt được trong thời gian qua.
Trong thời gian tới, Thứ trưởng lưu ý Tạp chí cần làm tốt một số việc sau đây:
- Quan tâm hơn nữa việc đào tạo, bồi dưỡng đội ngũ cán bộ giỏi về chuyên môn. Có chính sách thu hút, tập hợp những nhà toán học, các nhà sư phạm trong và ngoài nước, các em học sinh trên toàn quốc trở thành cộng tác viên thường xuyên và tích cực của Tạp chí.
- Tiếp tục khai thác sâu hơn các vấn đề của toán học nhằm nâng cao kiến thức cho học sinh, đóng góp có hiệu quả vào việc bồi dưỡng học sinh giỏi toán, chuẩn bị các kỹ năng về toán học cho học sinh trong các kỳ thi tốt nghiệp THPT và đại học, cao đẳng. Chú ý đổi mới hình thức để tạp chí hấp dẫn hơn nhằm thu hút bạn đọc và trở thành diễn đàn trao đổi, giới thiệu các thông tin mới về toán học trong nước cũng như trên thế giới.
- Tiếp tục đa dạng hoá các ấn phẩm, nâng cao chất lượng nội dung, có nhiều bài viết hay, bổ ích và thiết thực; góp phần không ngừng nâng cao chất lượng dạy và học môn toán trong trường phổ thông.

 Nhân dịp kỷ niệm 45 năm thành lập, Tạp chí đã được nhận bằng khen của Bộ trưởng Bộ Giáo dục và Đào tạo, Kỷ niệm chương Vì thế hệ trẻ của TƯ Đoàn TNCSHCM. Tạp chí cũng đã trao giải cuộc thi sáng tác biểu trưng Tạp chí Toán học và Tuổi trẻ cùng một số giải thưởng cuộc thi Giải toán kỷ niệm 45 năm Tạp chí và cuộc thi Giải Toán – Vật lí trên Tạp chí năm học 2008-2009.