Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Minhnguyenthe333

Đăng ký: 20-05-2015
Offline Đăng nhập: 05-02-2020 - 10:23
****-

Bài viết của tôi gửi

Trong chủ đề: Mấy bạn giải giúp mình tích phân này với

16-12-2016 - 20:51

Tính

Cận dưới phải khác $0$ và tích phân trên cách làm giống như $\int \frac{dx}{x^3\ln x}$

Chú ý rằng $d\left ( \frac{1}{\ln x} \right )=\frac{-dx}{x\ln^2x}$ và $x^2=e^{2\ln x}$. Khi đó đặt $t=\frac{1}{\ln x}$ thì

 

$\int_{k}^{+\infty} \frac{dx}{x^3\ln x}=-\int_{k}^{+\infty} \frac{\ln x}{x^2}d\left ( \frac{1}{\ln x} \right )=-\int_{k}^{+\infty} \frac{dt}{te^{\frac{2}{t}}}=\int_{k}^{+\infty} \frac{e^{-u}}{u}du=-E_1(2\ln x)$   (trong đó $u=\frac{2}{t}$)

 

P/s: Ở trên là hàm tích phân mũ cấp 1...


Trong chủ đề: $\int _{-1}^{\sqrt{2}} x^2...

06-12-2016 - 18:22

Tính tích phân: $\int _{-1}^{\sqrt{2}} x^2 \sqrt{4-x^2} dx$

Đặt $x=2\sin t$ thì $dx=2\cos tdt$ và sử dụng $\sin^2(x)=\frac{1-\cos(2x)}{2}$

$\int_{-1}^{\sqrt{2}} x^2\sqrt{4-x^2}dx=4\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \sin^22tdt=2t-\frac{\sin(4t)}{2}=\frac{5\pi}{6}-\frac{\sqrt{3}}{4}$


Trong chủ đề: $\int _{-1}^{\sqrt{2}} x^2...

06-12-2016 - 18:21

Tính tích phân: $\int _{-1}^{\sqrt{2}} x^2 \sqrt{4-x^2} dx$


Trong chủ đề: $\sum \frac{ab}{3+bc}\leq\fr...

27-11-2016 - 18:22

Cho $a,b,c\geq 0$ thoả mãn $a+b+c=3$. Chứng minh rằng $\sum \frac{ab}{3+bc}\leq\frac{3}{4}$

$VT=\frac{abc(a^2b+b^2c+c^2a)+9(ab+bc+ca)+3abc+3(a^2b^2+b^2c^2+c^2a^2)}{a^2b^2c^2+9abc+9(ab+bc+ca)+27}$

+Áp dụng bđt Cauchy: $\sum_{cyclic} (a^3+a^2b+ab^2)\geqslant 3(a^2b+b^2+c^2a)\iff a^2+b^2+c^2\geqslant a^2b+b^2c+c^2a$

 

+Đổi biến $p,q,r$ thì ta được: $VT\leqslant \frac{3q^2-2qr+9q}{r^2+9r+9q+27}$

Do đó ta chỉ cần chứng minh $\frac{3q^2-2qr+9q}{r^2+9r+9q+27}\leqslant \frac{3}{4}\iff 3r^2+r(8q+27)-(12q^2+9q-81)\geqslant 0$ $(*)$

Ta xét 2 trường hợp:
$q\leqslant \frac{9}{4}:$ Theo Schur bậc 1 thì $r\geqslant \max\{0,\frac{p(4q-p^2)}{9}\}=\max\{0,\frac{4q-9}{3}\}=0$

Thế thì $(*)\geqslant (q+3)(\frac{9}{4}-q)\geqslant 0$

$\frac{9}{4}\leqslant q\leqslant 3:$ Theo Schur bậc 2 thì $r\geqslant \frac{(4q-p^2)(p^2-q)}{6p}=\frac{(4q-9)(9-q)}{18}$

Do đó $(*)\geqslant (q-3)(q-\frac{9}{4})(4q^2-117q+81)\geqslant 0$

 

Dấu "=" xảy ra khi $(a,b,c)\sim (1,1,1);(0,\frac{3}{2},\frac{3}{2})$ và các hoán vị


Trong chủ đề: GPT: $11+10^x+6^x=(\sqrt{3})^{y!}$...

24-10-2016 - 20:22

Giải phương trình sau trên tập số nguyên:

$11+10^x+6^x=(\sqrt{3})^{y!}$

Từ giả thiết suy ra $x,y>0\iff 10+10^x+6^x=3^{\frac{y!}{2}}-1$

Ta có: $v_2(3^{\frac{y!}{2}}-1)=1+v_2(\frac{y!}{2})=1+v_2(y!)-v_2(2)=v_2(y!)$

Dễ thấy $v_2(10+10^x+6^x)=v_2(2)+v_2(5+2^{x-1}5^x+2^{x-1}3^x)=1$

Suy ra $2||y!$ kéo theo $y=2$ hoặc $y=3$

Từ đây ta tìm được $(x,y)=(1,3)$