Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Minhnguyenthe333

Đăng ký: 20-05-2015
Offline Đăng nhập: 05-02-2020 - 10:23
****-

Chủ đề của tôi gửi

$AD\perp MN$

26-12-2016 - 17:52

Tam giác $ABC$ nội tiếp đường tròn $(O)$, đường tròn $(K)$ tiếp xúc $(O)$ tại $D$ và tiếp xúc $AC,AB$ lần lượt tại $E,F$. $AL$ là đường kính của $(O)$. $KE,KF$ lần lượt cắt $LB,LC$ tại $M,N$.Chứng minh rằng $AD\perp MN$


Đường tròn ngoại tiếp tam giác IJD đi qua một điểm cố định

24-12-2016 - 10:22

Cho tam giác ABC nhọn. Một điểm D thay đổi trên BC. Gọi I,J lần lượt là tâm đường tròn nội tiếp tam giác ABD và ACD.

a) Chứng minh rằng đường tròn ngoại tiếp tam giác IJD luôn đi qua một điểm cố định

b) Gọi P,M là tiếp tuyến của (I) với AB,BC; gọi N,Q là tiếp tuyến của (J) với AC,BC. Gọi X là giao điểm của PM và NQ. Chứng minh XD vuông góc với IJ


$p\mid 2m-n$

05-12-2016 - 11:49

Cho $p$ là số nguyên tố dạng $4k+3$ và 2 số nguyên dương $m,n$ thỏa mãn $\gcd(m,n)=1$ và

                $\frac{1}{0^2+1}+\frac{1}{1^2+1}+\frac{1}{2^2+1}+....+\frac{1}{(p-1)^2+1}=\frac{m}{n}$

Chứng minh rằng:  $p\mid 2m-n$


$\frac{n}{1+\sqrt[n]{\prod_{i=1}^n a_...

08-11-2016 - 20:38

Cho $0<a_1\leqslant a_2\leqslant ...\leqslant a_n$ thỏa mãn $a_na_{\left \lfloor \frac{n+1}{2} \right \rfloor}\leqslant 1$

 

Chứng minh rằng:  $\frac{n}{1+\sqrt[n]{\prod_{i=1}^n a_i}}\geqslant \sum_{i=1}^n \frac{1}{1+a_i}$     (Trích đề thi đề nghị 30/4/2015)


$a_n=(p+1)^n+Q(n)$

24-10-2016 - 20:05

Cho $p$ là số nguyên tố. Chứng minh rằng $\forall m\in \mathbb{Z}$ luôn tồn tại đa thức $Q(x)$ với hệ số nguyên sao cho $p^m$ là ước lớn nhất của các số $a_n=(p+1)^n+Q(n)$ với $n=1,2,..$