Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


lecongde

Đăng ký: 21-05-2015
Offline Đăng nhập: 11-03-2019 - 22:41
-----

Bài viết của tôi gửi

Trong chủ đề: Đề thi chọn HSG cấp tỉnh Bắc Giang môn Toán 9 năm học 2014-2015

07-03-2016 - 22:28

 

Đề thi chọn học sinh giỏi văn hóa cấp tỉnh

Năm học: 2014-2015

Môn thu: Toán 9

Ngày thi: 21/3/2015

Sở giáo dục và đào tạo

Bắc Giang

 

Câu 1:

Cho $P=\frac{\sqrt{x}-2\sqrt{y}}{\sqrt{x}-3\sqrt{y}}+\frac{y}{\sqrt{x}+2\sqrt{y}}-\frac{5y}{x-\sqrt{xy}-6y}$ với $x\geq 0; y>0; x\neq 9y$

1/ Tính $\frac{x}{y}$ biết $P=\frac{2007+2\sqrt{2015}}{2011}$

2/ Tìm $max P$.

Câu 2:

1/ Giải phương trình:$\sqrt{2x+1}+\frac{2x-1}{x+3}-(2x-1)\sqrt{x^2+4}-\sqrt{2}=0$

2/ Giải hệ phương trình:

$\left\{\begin{matrix} x^2+2xy-2x-y=0 &\\ x^4-4(x+y-1)x^2+y^2+2xy=0 \end{matrix}\right.$

Câu 3:

1/ Cho phương trình: $ax^2-(b-a+1)x=m^2+1$ $(1)$.

a/ Với $a=1;b=2$ thì phương trình $(1)$ luôn có 2 nghiệm: $x_1;x_2$. Tìm min $x_1^2+x_2^2$

b/ Nếu: $2a^2+b^2-2ab-6a+2b+5=0$ thì pt $(1)$ có hai nghiệm đối nhau,

2/ Tìm $2$ chữ số tận cùng của $S=1^{22}+2^{22}+3^{22}+.....+2015^{22}$

Câu 4:

1/ Cho hình vuông $ABCD$ và $M$ thuộc phân giác ngoài $\widehat{ABC}$ nhưng $M$ không thuộc $DA,DC$. Đường trung trưc của $MD$ cắt $BC$, $AB$ lần lượt tại $E,F$. Chứng minh rằng: $DEMF$ là hình vuông.

2/ Trên cạnh $AB,BC,CA$ của $\Delta ABC$ đều lấy $M,N,P$ sao cho: $AM=BN=CP$

a/ Chứng minh $O$ của đường tròn ngoại tiếp $\Delta ABC$ là tâm đường tròn ngoại tiếp $\Delta MNP$.

b/ Tìm $M,N,P$ để có $min P_{\Delta MNP}$

Câu 5:

Cho $a,b,c$ là các số thực dương thỏa mãn: $a\leq 1; b\leq 2$ và $a+b+c=6$

CMR: $(a+1)(b+1)(c+1)\geq 4abc$

 

P/s: đề năm nay khá khó, mình còn bài 5, vừa trống cái nghĩ ra

Mọi người chém câu 4-1 trước đi, tại mình làm bằng cách chứng minh trùng nên hơi sợ:$DE'MF'$ là hình vuông.

 

ban nao co de khong gui cho minh voi 

[email protected]


Trong chủ đề: Đề thi chọn HSG cấp tỉnh Bắc Giang môn Toán 9 năm học 2014-2015

07-03-2016 - 22:15

 

Đề thi chọn học sinh giỏi văn hóa cấp tỉnh

Năm học: 2014-2015

Môn thu: Toán 9

Ngày thi: 21/3/2015

Sở giáo dục và đào tạo

Bắc Giang

 

Câu 1:

Cho $P=\frac{\sqrt{x}-2\sqrt{y}}{\sqrt{x}-3\sqrt{y}}+\frac{y}{\sqrt{x}+2\sqrt{y}}-\frac{5y}{x-\sqrt{xy}-6y}$ với $x\geq 0; y>0; x\neq 9y$

1/ Tính $\frac{x}{y}$ biết $P=\frac{2007+2\sqrt{2015}}{2011}$

2/ Tìm $max P$.

Câu 2:

1/ Giải phương trình:$\sqrt{2x+1}+\frac{2x-1}{x+3}-(2x-1)\sqrt{x^2+4}-\sqrt{2}=0$

2/ Giải hệ phương trình:

$\left\{\begin{matrix} x^2+2xy-2x-y=0 &\\ x^4-4(x+y-1)x^2+y^2+2xy=0 \end{matrix}\right.$

Câu 3:

1/ Cho phương trình: $ax^2-(b-a+1)x=m^2+1$ $(1)$.

a/ Với $a=1;b=2$ thì phương trình $(1)$ luôn có 2 nghiệm: $x_1;x_2$. Tìm min $x_1^2+x_2^2$

b/ Nếu: $2a^2+b^2-2ab-6a+2b+5=0$ thì pt $(1)$ có hai nghiệm đối nhau,

2/ Tìm $2$ chữ số tận cùng của $S=1^{22}+2^{22}+3^{22}+.....+2015^{22}$

Câu 4:

1/ Cho hình vuông $ABCD$ và $M$ thuộc phân giác ngoài $\widehat{ABC}$ nhưng $M$ không thuộc $DA,DC$. Đường trung trưc của $MD$ cắt $BC$, $AB$ lần lượt tại $E,F$. Chứng minh rằng: $DEMF$ là hình vuông.

2/ Trên cạnh $AB,BC,CA$ của $\Delta ABC$ đều lấy $M,N,P$ sao cho: $AM=BN=CP$

a/ Chứng minh $O$ của đường tròn ngoại tiếp $\Delta ABC$ là tâm đường tròn ngoại tiếp $\Delta MNP$.

b/ Tìm $M,N,P$ để có $min P_{\Delta MNP}$

Câu 5:

Cho $a,b,c$ là các số thực dương thỏa mãn: $a\leq 1; b\leq 2$ và $a+b+c=6$

CMR: $(a+1)(b+1)(c+1)\geq 4abc$

 

P/s: đề năm nay khá khó, mình còn bài 5, vừa trống cái nghĩ ra

Mọi người chém câu 4-1 trước đi, tại mình làm bằng cách chứng minh trùng nên hơi sợ:$DE'MF'$ là hình vuông.

 


Trong chủ đề: Đề thi chọn HSG cấp tỉnh Bắc Giang môn Toán 9 năm học 2014-2015

07-03-2016 - 22:14

thay khó ghê