Đến nội dung

Uchiha sisui

Uchiha sisui

Đăng ký: 09-06-2015
Offline Đăng nhập: 26-03-2019 - 15:15
****-

#715639 Đề thi chọn HSG tỉnh Ninh Bình 2018-2019

Gửi bởi Uchiha sisui trong 16-09-2018 - 22:00

41620952_2184024598587989_72736328149211

 

Vô tình thấy bài BĐT trong sách 

Bài này là kĩ thuật bổ đề chặn tích của ông Cẩn!




#713917 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 06-08-2018 - 12:16

:like  Có lẽ phải đưa cái topic này về đúng với quỹ đạo của nó rồi! Nhiệt lên nào members! Bài mới đây!

 

Bài 18Cho đường tròn $(O)$ cố định và hai điểm $B, C$ cố định thuộc đường tròn $(O)$, điểm $A$ di động trên đường tròn $O$ . Đường tròn $(I)$ nội tiếp tam giác $ABC$, tiếp xúc với $BC, CA, AB$ lần lượt tại $D, E, F$. Gọi $L$ là điểm Lemoine  của tam giác $DEF$ . $X$ là điểm đối xứng của $L$ qua $EF$. $AX$ cắt $(O)$ tại $Y$. Chứng minh rằng $YD$ luôn đi qua một điểm cố định.

 




#713785 Đề thi chọn đội tuyển HSG QG Hà Nội năm học 2014-2015

Gửi bởi Uchiha sisui trong 03-08-2018 - 20:26

Cho em hỏi bài số học giải thế nào ạ ( bài 1)




#711847 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 02-07-2018 - 08:57

Bài 13 có thể giải được bằng hàng điểm. Còn đây là lời giải bài 14!

 

Bài 14. 

 

Gọi $S$ là giao điểm của $MN$ là $BC$.  Dễ thấy rằng các tứ giác $BNMC$ và $BFEC$ nội tiếp và bốn điểm $D, I, E, F$ cùng nằm trên đường tròn Euler của tam giác $ABC$.

 

Ta có rằng: $SD.SI=SE.SF=SB.SC=SM.SN$ nên bốn điểm $D, I, M, N$ cùng nằm trên một đường tròn!

 

Gọi $L$ là giao điểm của $AK$ và $BC$. Theo kết quả quen thuộc $OA$ vuông góc với $EF$ nên suy ra $A$ là điểm chính giữa cung $MN$.

 

Suy ra $AN^{2}=AE.EC=AH.AD\Rightarrow \bigtriangleup ANH$ ~ $\bigtriangleup ADN$.

 

Suy ra $\widehat{ANH}=\widehat{ADN}\Rightarrow AK$ vuông góc với $MN$.

 

 

 

 

Hình gửi kèm

  • Untitled.png



#711798 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 30-06-2018 - 11:26

đánh liên minh bác ạ mà bài 8 không có cách khác ngoài cách của nhện chúa ạ,

Bài 8 xem trong file mà bác Hoàng đưa thôi! Em không dám giải + :D  :D  :like




#711797 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 30-06-2018 - 11:25

Bài 13. (Bzasil MO 2017) Cho tam giác $ABC$, trên $AB$ lấy điểm $M$, $AC$ lấy điểm $N$ sao cho $BM=MN=NC$. Tiếp tuyến tại $A$ của đường tròn ngoại tiếp tam giác $ABC$ cắt $MN$ tại $P$. Gọi $I$ là tâm đường tròn nội tiếp tam giác $AMN$. Chứng minh rằng $PA=PI$.

 

Bài 14. (Sưu tầm) Cho tam giác $ABC$ có ba góc nhọn nội tiếp $(O)$, kẻ ba đường cao $AD, BE, CF$. đồng quy tại $H$. Đường thẳng $EF$ cắt $(O)$ lần lượt tại $M, N$ ($M$ thuộc cung nhỏ AB, $N$ thuộc cung nhỏ $AC$). Gọi $I$ là trung điểm của $BC$, $MI$ cắt $(O)$ tại điểm thứ hai là $K$. Chứng minh rằng $AK$ vuông góc với $HN$.  




#711789 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 30-06-2018 - 09:44

Lời giải bài 9  Đây là được coi là $1$ bổ đề cơ bản của đường đối trung. Chứng minh:

Kẻ $GM,GN$ vuông góc với$AB,AC$ thì ta cần chứng minh $\frac{AB}{AC}=\frac{d(G,AB)}{d(G,AC)}=\frac{GM}{GN}$. Mặt khác ta có tam giác $EBG$ đồng dạng tam giác $CFG$ (g.g) nên $2$ đường cao tương ứng có tỉ lệ bằng $\frac{BE}{CF}=\frac{AB}{AC}$. Ta có điều phải chứng minh.

 

Liên quan đến đường đối trung thì mình sẽ đề suất tiếp $1$ bài cũng về đối trung.

Bài 10. Cho tam giác $ABC$ nội tiếp và ngoại tiếp đường tròn $(O)$ và $(I)$.$(I)$ tiếp xúc $BC$ tại $D$. $(ABD)$ cắt $AC$ tại $E$ và $(ACD)$ cắt $AB$ tại $F$. Gọi $M,N$ lần lượt là trung điểm của $DE,DF$. Chứng minh rằng $OI \perp AD$ khi và chỉ khi $AD,BN,CM$ đồng quy. 

Bài 10. 

Ta có bổ đề quen thuộc sau: $OI$ vuông góc với $AD$ khi và chỉ khi $AD$ là đường đối trung

 

Ta xét trường hợp thuận: $OI$ vuông góc với $AD$ ta sẽ chứng minh $AD, BN, CM$ đồng quy. Trường hợp còn lại chứng minh tương tự!

 

Từ bổ đề trên suy ra $AD$ là đường đối trung của tam giác $ABC$ ứng với đỉnh $A$ suy ra $\frac{DB}{DC}=\frac{AB^{2}}{AC^{2}}$

 

Dễ thấy tam giác $BFD$ ~ tam giác $ECD$ . Suy ra $\frac{BF}{CE}=\frac{DF}{CD}=\frac{DB}{ED}$.

 

Đến đây dùng định lý Ceva sin là xong 

Hình gửi kèm

  • 2.png



#711786 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 30-06-2018 - 08:22

Bài 8: Cho $\triangle{ABC}$ tâm nội $I$ . CMR 4 đường thẳng Euler của $BIC,AIB,AIC,ABC$ đồng quy $(Schiffler)$

Bác show lời giải bài 5 được không ạ :), tiện thể khi nào giải bác up hình đi kèm với lời giải ạ  :(  như vậy bạn đọc sẽ tiện theo dõi hơn!

 

Bài mới:

 

Bài 11. (USA TST 2011) Cho tam giác $ABC$ nhọn có trực tâm $H$ và tâm đường tròn ngoại tiếp là $O$. Gọi $M, N$ lần lượt là trung điểm của $AB, AC$. Các đường thẳng $MH, NH$ cắt $(O)$ tại $P$ và $Q$. Giả sử $MN$ cắt $PQ$ tại $T$. Chứng minh rằng $TA$ là tiếp tuyến của $(O)$.

 

Bài 12. (Đề chọn HSG Duyên Hải Lớp 11 Chuyên Thái Bình 2013-2014) Cho tam giác $ABC$ vuông tại $A$. Hình chữ nhật $MNPQ$ thay đổi sao cho $M$ thuộc $AB$, N thuộc $AC$, $P, Q$ thuộc $BC$. ${K}=BN\cap MQ, {L}=CM\cap NP, {X}=MP\cap NQ, {Y}=KP\cap LQ$. Chứng minh rằng:

  • a) $\widehat{KAB}=\widehat{LAC}$
  • b) $XY$ đi qua một điểm cố định.   



#711767 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 29-06-2018 - 20:15

Bài 5 hơi khó nên mình xin đề xuất một số bài toán mới!

 

Bài 6. (China TST 2008) Cho tam giác $ABC$ $(AB<AC)$ , đường tròn nội tiếp $(I)$ tiếp xúc với $BC$ tại $D$ . Trên $AD$  lấy điểm $K$ sao cho $CD=CK$ . Giả sử  $AD$ cắt $(I)$  tại điểm thứ hai là $G$ . Gọi $L$ là giao điểm của $GB$  và $CK$ . Chứng minh rằng $K$  là trung điểm của $CL$.

 

Bài 7. (Trần Minh Ngọc) Cho tam giác $ABC$ nội tiếp $(O)$ . Gọi $P$ là giao điểm của hai tiếp tuyến tại $B$ và $C$  của đường tròn. Trên $AP$ lấy $E, F$ sao cho $BE// AC, CF//AB$. $BE$ cắt $CF$ tại $D$. $CD$, $BD$ tương ứng cắt $(ADE)$, $(ADF)$ tại điểm thứ hai là $M, N$. Chứng minh rằng: $AP$ vuông góc với $MN$.

 

   




#711758 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 29-06-2018 - 16:15

Bài 3. Trước tiên ta chứng minh bổ đề sau, bổ đề này rất quen thuộc trong những bài toán về đường đối trung.

 

Bổ đề. Cho tam giác $ABC$ nội tiếp đường tròn tâm $(O)$, $E$ và $F$ lần lượt là các điểm nằm trên $CA, AB$ sao cho $EF//BC$. Đường tròn ngoại tiếp tam giác $ABE$ và tam giác $ACF$ cắt nhau tại $G$ khác $A$. Khi đó $G$ nằm trên đường đối trung xuất phát từ đỉnh $A$.

 

Chứng minh

 

Dễ thấy $\bigtriangleup GFB$ đồng dạng với $\bigtriangleup GEC\Leftrightarrow \frac{[GFB]}{[GEC]}=\frac{BF^{2}}{CE^{2}}=\frac{AB^{2}}{AC^{2}}$.

 

Và ta có: $\frac{[GAB]}{[GAC]}=\frac{[GAB]}{[GFB]}.\frac{[GFB]}{[GEC]}.\frac{[GEC]}{[GAC]}=\frac{BA}{BF}.\frac{CE}{CA}.\frac{AB^{2}}{AC^{2}}=\frac{AB^{2}}{AC^{2}}$.

 

Suy ra $G$ thuộc đường đối trung ứng với đỉnh $A$.

 

Quay trở lại bài toán

 

Gọi $T$ là giao điểm của tiếp tuyến tại $E, F$ với đường tròn $(D)$. Theo bổ đề trên kết hợp tính chất quen của tứ giác điều hòa suy ra $A, G, T$ thẳng hàng. Và cũng dễ thấy $T, L, D$ thẳng hàng vì cùng nằm trên trung trực của $EF$.

 

Gọi $X$ là giao điểm của $TE$ và $BC$ thì ta có: $\widehat{NEC}=\widehat{AFE}=\widehat{ABN}$ suy ra tứ giác $AENB$ nội tiếp.

 

Mà tứ giác $DENL$ cũng nội tiếp suy ra $TL.TD=TN.TE=TG.TA$ suy ra tứ giác $ADLG$ nội tiếp.

 

Vậy ta có điều phải chứng minh.

 

 

Hình gửi kèm

  • 2.png



#711740 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 29-06-2018 - 11:23

Bài 4. 

 

Có thể giải bài toán như sau:

 

Ta tạo dựng mô hình của hàng điểm bằng cách gọi $H$ và $G$ lần lượt là giao điểm của $MN$ với $AO$ và $EF$. Gọi $K$ là tiếp điểm của tiếp

 

tuyến thứ hai từ $D$ đến $(O)$. Ta có tứ giác  $ABKClà tứ giác điều hòa suy ra $A(DKBC)=-1$ . Mà $OM$ vuông góc với $AB$, $ON$ vuông góc

 

với $AC$, $OH$ vuông góc với $AD$ , $OG$ vuông góc với $AK$ nên theo định lý quen thuộc của hàng điểm suy ra $O(MNHG)=-1$ suy ra

 

$(MNHG)=-1$  suy ra $A(MNHG)$=-1 suy ra $A(EFOG)=-1$ suy ra $AO, EN,MF$ đồng quy .

 

Vậy ta có điều phải chứng minh

 

Hình gửi kèm

  • Untitled.png



#711684 Topic Hình Học Phẳng Ôn Thi Chọn Đội Tuyển Thành Phố

Gửi bởi Uchiha sisui trong 27-06-2018 - 19:09

Lời nói đầu. Hàng năm mỗi Tỉnh, Thành Phố đều có một đề thi chọn ra những học sinh xuất sắc nhất để ôn tập phục vụ cho kì thi VMO. Với mục đích giúp các bạn có thêm tư liệu cũng như để học hỏi kinh nghiệm của bản thân, mình xin lập ra topic này! 

 

Yêu cầu:

 

-Nội dung các bài toán trong topic không giới hạn, miễn là ghi số thứ tự bài toán!

 

- Lời giải của bài toán phải đi kèm với hình vẽ, và yêu cầu gõ latex!

 

- Nhớ ghi nguồn cho bài toán, nếu không rõ nguồn có thể ghi '' Sưu tầm'' và nếu lời giải lấy của một ai đó thì nên tôn trọng người nghĩ ra lời giải đó và ghi tên người giải (tất nhiên có thể có những lời giải, ý tưởng trùng nhau)!

 

-Kiến thức giải toán là không giới hạn, các bạn có thể dùng nhiều phương pháp nhưng mình vẫn mong muốn có một phương pháp thuần túy nhất!

 

Hy vọng mọi người sẽ phục vụ cho topic này phát triển!

 

Còn bây giờ mình xin đề xuất một số bài toán sau!

 

Bài 1. Cho tam giác $ABC$ với các đường đối trung $BE, CF$. Gọi $M, N$ là trung điểm của $BE, CF$. Chứng minh rằng $BN, CM$ và trung trực của $BC$ đồng quy. 

(IMO Shortlish 2006)

 

Bài 2. Cho tam giác $ABC$ vuông tại $A$ $(AB<AC)$, trên cạnh $BC$ lấy điểm $N$ sao cho $BA=BN$. Gọi $M$ là trung điểm của $AB$, đường tròn đường kính $AB$ cắt $(ANC)$ tại $P$. Đường thẳng qua $B$ vuông góc với $MP$ cắt $PA$ tại $E$ . Đường thẳng qua $P$ song song với $MP$ cắt $PN$ tại $F$. Chứng minh rằng $PC$ đi qua trung điểm của $EF$.

(Trích đề thi HSG TP Hà Nội Vòng 2 năm 2016-2017)

 

Bài 3. Cho tam giác $ABC$. Gọi $E, F$ lần lượt thuộc $CA, AB$ sao cho $EF$ song song với $BC$. Đường tròn ngoại tiếp tam giác $ABE, ACF$ cắt nhau tại $G$ khác $A$. Gọi $D$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Đường tròn qua $E, F$ tiếp xúc với $BC$ tại $L$. Chứng minh rằng bốn điểm $A, L , G, D$ đồng viên.

(Trần Quang Hùng)

Bài 4. Cho đường tròn $(O)$ ngoại tiếp tam giác $ABC$, tiếp tuyến tại $A$ của đường tròn cắt $BC$ tại $D$. Đường thẳng $DO$ cắt $AB, AC$ tại $E, F$. Gọi $M, N$ lần lượt là trung điểm của $AB, AC$. Chứng minh rằng $EN, FM, AO$ đồng quy.

(Sưu tầm)   

 

 

 

  




#704722 $f(x+y)+f(x-y)-2f(x)f(1+y)=2xy(3y-x^{2}),\forall x,y...

Gửi bởi Uchiha sisui trong 01-04-2018 - 21:49

Lời giải của anh Cẩn đây bạn:

 

Link: http://voquocbacan.b...xcdot.html#more




#704630 Đề thi chọn HSG lớp 12 tỉnh Quảng Bình năm 2017-2018

Gửi bởi Uchiha sisui trong 31-03-2018 - 20:28

Bài bất đẳng thức là một bài khá quen thuộc, tôi xin trình bày lời giải của mình!

 

Áp dụng bất đẳng thức $AM-GM$ ta có:

 

$a^{3}+ab^{2}\geq 2a^{2}b, b^{3}+bc^{2}\geq 2b^{2}c, c^{3}+ca^{2}\geq 2c^{2}a$

 

$\Rightarrow a^{2}+b^{2}+c^{2}\geq a^{2}b+b^{2}c+c^{2}a$

 

Lại có:

 

$\sum \frac{a^{2}}{b^{2}+1}=\sum a^{2}-\sum \frac{a^{2}b^{2}}{b^{2}+1}\geq \sum a^{2}-\sum\frac{a^{2}b^{2}}{2b}=\sum a^{2}-\sum \frac{a^{2}b}{2}\geq \sum a^{2}-\sum \frac{a^{2}}{2}=\sum \frac{a^{2}}{2}\geq \frac{(a+b+c)^{2}}{3.2}=\frac{3}{2}$

 

Vậy ta có điều phải chứng minh. Dấu bằng xảy ra khi và chỉ khi $a=b=c=1$




#703699 $MD$ đi qua trung điểm $IH$

Gửi bởi Uchiha sisui trong 16-03-2018 - 19:55

Lời giải

 

Gọi $Z,V$ lần lượt là giao điểm của $MD$ với $AH,HI$. Ta có kết quả quen thuộc là $AD$ là tia phân giác của $\widehat{HAO}$. 

 

Suy ra $\widehat{ZAI}=\widehat{DAQ}=\widehat{DMQ}\Rightarrow$ Tứ giác $AMZI$ nội tiếp.

 

$\Rightarrow \widehat{AZI}=\widehat{AMI}=90^{0}$ $\Rightarrow ZI//BC$.

 

Gọi $L$ là giao điểm của $AI$ và $BC$. Ta có: 

 

$\frac{ZH}{ZA}=\frac{IL}{IA}=\frac{BL}{BA}=\frac{DL}{DB}=\frac{DB}{DA}=\frac{DI}{DA}$           (1)

 

Lại áp dụng định lý $Menelaus$ vào tam giác $AHI$ với cát tuyến $DZV$ ta có:

 

$\frac{VH}{VI}.\frac{DI}{DA}.\frac{ZA}{ZH}=1$                       (2)

 

Từ (1) và (2) ta có điều phải chứng minh!

Hình gửi kèm

  • Untitledg.png