Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


royal1534

Đăng ký: 09-07-2015
Offline Đăng nhập: 07-10-2019 - 23:45
****-

Chủ đề của tôi gửi

$a^n+2^n \mid b^n+c$

12-10-2017 - 23:35

Bài toán : Tìm các số nguyên $a,b,c$ $(c \geq 0)$ thỏa $a^{n}+2^{n} \mid b^{n}+c$ với mọi $n$ nguyên dương đồng thời $2ab$ không là số chính phương.


$x^2+y^2+z^2=p.t$

08-01-2017 - 04:40

Bài toán 1: Cho $p$ là số nguyên tố. Chứng minh tồn tại các số $x,y,z,t$ thỏa mãn :

$x^2+y^2+z^2=p.t$ (Với $0<t<p$)

Bài toán 2: Cho các số nguyên $a,b,c$ lớn hơn 1. Chứng minh rằng nếu với mỗi số nguyên dương $n$, tồn tại $k$ sao cho $a^k+b^k=2c^n$ thì $a=b$

Bài toán 3: Cho a,b,c là các số nguyên và $a \neq 0$ sao cho $an^2+bn+c$ là số chính phương với mọi $n>2013^{2014}$.

Chứng minh rằng tồn tại $x,y$ nguyên sao cho : $a=x^2,b=2xy,c=y^2$


$2^x+7^y=3^z$

26-12-2016 - 23:48

Bài toán : Tìm nghiệm nguyên không âm của phương trình sau :

$$2^x+7^y=3^z$$


Chứng minh $X,Y,Z,T$ đồng viên

24-11-2016 - 01:11

Bài toán: Cho tam giác $ABC$. $D$ là một điểm trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại điểm thứ $2$ là $E$. Đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại điểm thứ hai là $F$. Hai đường tròn $(O_{1}),(O_{2})$ qua hai điểm $A,E$ tiếp xúc $BC$ tại $M,N$. $X$ là giao điểm $ME$ và $NF$. $Y$ là giao điểm $MF$ và $NE$. Hai đường tròn $(O'_{1}).(O'_{2})$ qua hai điểm $A,F$ tiếp xúc $BC$ tại $P,Q$. $Z$ là giao điểm $PE$ và $QF$, $T$ là giao điểm $PF$ và $QE.$

Chứng minh $X,Y,Z,T$ đồng viên 


Chứng minh ba đường tròn $(ABC)$,$(CDF)$ và $(BDE)$ có ít...

14-11-2016 - 19:36

1.Hai đường tròn $S_{1},S_{2}$ có điểm chung $A$ (Không cần thiết phải tiếp xúc nhau). Qua A vẽ đường thẳng cắt $S_{1}$ tại B và $S_{2}$ tại $C$. Tiếp tuyến tại $B$ và $C$ của hai đường tròn cắt nhau tại $D$. Chứng minh $\widehat{BDC}$ không phụ thuộc vào đường thẳng qua $A$

2.Trên cạnh $AB$ của tứ giác lồi $ABCD$ lấy một điểm $E$ khác $A,B$. Các đoạn $AC$ và $DE$ cắt nhau tại $F$. Chứng minh ba đường tròn $(ABC)$,$(CDF)$ và $(BDE)$ có ít nhất một điểm chung