Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


CaptainCuong

Đăng ký: 25-07-2015
Offline Đăng nhập: 07-12-2018 - 02:41
***--

Bài viết của tôi gửi

Trong chủ đề: Đề thi học sinh giỏi lớp 9 Tp HCM

29-03-2018 - 17:41

Bài 5.2 Áp dụng định lí brahamagupta suy ra M,N lần lượt là trung điểm AD, BC. Tới đây quen thuộc rồi


Trong chủ đề: ĐỀ KIỂM TRA LỚP CHUYÊN LẦN 3 - THPT CHUYÊN LÊ HỒNG PHONG, THÀNH PHỐ HỒ CH...

15-01-2018 - 23:52

 

Câu 4. Cho $A$ là tập hợp gồm $n$ phần tử là các số nguyên dương phân biệt ($n>1$) sao cho khi bớt đi một phần tử bất kỳ của $A$ thì tập hợp còn lại có thể chia được thành 2 tập con (có giao khác rỗng) sao cho tổng các phần tử ở mỗi tập con bằng nhau. Chứng minh các phần tử của $A$ cùng tính chẵn lẻ và $n\geq 7$.

Câu 5. Cho tam giác nhọn không cân $ABC$, có đường trung tuyến $AM$ và đường cao $AH$ ($M,H\in BC$). Các điểm $Q$ và $P$ lần lượt thuộc các tia $AB$ và $AC$ sao cho $QM\perp AC$ và $PM\perp AB$. Đường tròn ($PMQ$) cắt cạnh $BC$ lần thứ hai tại điểm $X$. Chứng minh rằng $BH=CX$.

 

https://artofproblem...126020p5204821 

All Russia MO 2015


Trong chủ đề: TOPIC Luyện tập về ứng dụng của tỉ số kép và hàng điểm điều hòa

04-12-2017 - 23:37

Bài 3. (9) VMO 2010 

 

Cho tam giác $ABC$ nội tiếp $(O)$ cố định $B,C$  và $A$ di chuyển trên $(O)$. Gọi phân giác trong và ngoài của tam giác lần lượt là $AD$ và $AE$ với $D,E$ thuộc $BC$. $M$ là trung điểm của $DE$. $H$ là trực tâm của tam giác $ABC$. Chứng minh rằng đường thẳng qua $H$ vuông góc với $AM$ luôn đi qua một điểm cố định khi $A$ di chuyển trên $(O)$.

$(EDBC)=-1$ mà $M$ là trung điểm $ED$ suy ra $MD^2=MB.MC$ suy ra $MA$ là tiếp tuyến tại $M$ của $(O)$. Gọi $(d)$ là đường thẳng qua $H$ vuông góc $MA$ suy ra $(d)$ song song $AO$. Gọi $O'$ đối xứng $O$ qua $BC$ suy ra $HO'$ song song $AO$ suy ra $(d)$ qua $O'$


Trong chủ đề: Topic ôn thi hình học vào cấp 3 chuyên

26-04-2017 - 08:37

$\boxed{\text{Bài Toán 61}}$ [Sưu tầm] Từ $A$ nằm ngoài đường tròn $(O;R)$ vẽ $2$ tiếp tuyến $AB,AC$ với đường tròn $(O)$ ($B,C$ là các tiếp điểm). Gọi $P,Q$ lần lượt là trung điểm của $AB,AC$. Từ điểm $M$ bất kỳ thuộc cạnh $PQ$ kẻ tiếp tuyến $MD$ của đường tròn. Chứng minh rằng: $MA=MD$

$PB^2=PA^2; QA^2=QC^2 \rightarrow PQ$ là trục đẳng phương của $(O;R)$ và $(A;0)$ vậy. Vậy phương tích từ D đến $(O;R)$ và $(A;0)$ bằng nhau $\rightarrow MD^2=MA^2$ suy ra đpcm 


Trong chủ đề: $a+b+c=1$ tim GTLN $ P=(a-b)(b-c)(c-a)$

12-12-2016 - 11:36

Lời giải :

Xét $P^2=(a-b)^2(b-c)^2(c-a)^2.$
Không mất tính tổng quát. Giả sử $a \geq b \geq c.$
Ta suy ra các đánh giá sau:
$(b-c)^2 \leq b^2, (c-a)^2 \leq a^2$
Suy ra $P^2 \leq a^2b^2(a-b)^2$
Áp dụng bđt Cauchy ta có :
$4P^2=2ab.2ab.(a-b)^2 \leq \frac{[2ab+2ab+(a-b)^2]^3}{27}=\frac{(a+b)^6}{27} \leq \frac{(a+b+c)^6}{27}=\frac{1}{27}$
$\Rightarrow P^2 \leq \frac{1}{27.4}=\frac{1}{108}$
$\Rightarrow P \leq \frac{1}{6\sqrt{3}}$
Đẳng thức xảy ra khi $(a,b,c)=(\frac{3+\sqrt{3}}{6},\frac{3-\sqrt{3}}{6},0)$

$ab$ chưa chắc dương nên ko thể cauchy $b-c<b<0$ thì sao bạn