Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


tungthdctrmath

Đăng ký: 14-09-2015
Offline Đăng nhập: 07-05-2017 - 21:33
-----

#679191 MOCK TEST FOR BMO 2017

Gửi bởi tungthdctrmath trong 01-05-2017 - 23:05

Bài 1:
- Ta biến đổi như sau:
$$n! \vdots n^3-1 \Leftrightarrow n.(n-2)! \vdots (n^2+n+1).$$
- Khi đó do $ƯCLN(n,n^2+n+1)=1$ nên bài toán tương đương chứng minh có vô hạn $n \in \mathbb{N^*}$ sao cho:

$$(n-2)! \vdots (n^2+n+1)$$
- Xét $n=2^{2^k}, \forall k \geq 3$, ta nhận thấy rằng:

$$n^2+n+1= 2^{2^{k+1}}+2^{2^k}+1=(2^{2^k}-2^{2^{k-1}}+1).(2^{2^k}+2^{2^{k-1}}+1)=$$$$(2^{2^k}-2^{2^{k-1}}+1).(2^{2^{k-1}}-2^{2^{k-2}}+1)\dots(2^2-2+1).(2^2+2+1).$$
Mà $(n-2)!= (2^{2^k}-2)!$ và do $2^{2^j}-2^{2^{j-1}}+1>2^{2^{j-1}}-2^{2^{j-2}}+1, \forall j \geq 3$, $2^{2^2}-2^2+1 > 2^2+2+1>2^2-2+1$, n ta chỉ cần chứng minh với $k \geq 3$ thì bắt đẳng thức sau luôn đúng:
$$2^{2^k}-2^{2^{k-1}}+1 \leq n-2=2^{2^k}-2 \Leftrightarrow 2^{2^{k-1}} \geq 3$$
Dễ thấy với $k \geq 3$ thì luôn đúng, từ đó ta suy ra đpcm.
- P.S.: Hướng của mình chủ yếu dựa vào đẳng thức $a^4+a^2+1=(a^2+a+1)(a^2-a+1)$ mà làm quen nhiều bài nên nhớ tới $a=2^{2^k}$ để tách nhân tử được nhiều lần.


#588931 Đăng ký tham gia dự thi VMEO IV

Gửi bởi tungthdctrmath trong 14-09-2015 - 19:21

Họ Và Tên : Nguyễn Duy Tùng

Nick Trong DIễn Đàn: tungthdctrmath 

Năm Sinh: 1998

Hòm Thư: [email protected]

Dự Thi Cấp: THPT