Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Ngockhanh99k48

Đăng ký: 20-10-2015
Offline Đăng nhập: 12-01-2018 - 17:03
****-

Bài viết của tôi gửi

Trong chủ đề: Tuần 3 tháng 2/2017: Chứng minh tứ giác $AKNL$ ngoại tiếp

19-02-2017 - 20:55

Lời giải: Dễ thấy rằng $DA$ và $DM$ đẳng giác trong góc $\angle EDF$. Ta lại có $MD. MN= ME. MF= MA. MJ$ nên $A, D, J, N$ đồng viên. Do $JN=JD$ nên $AN, AD$ đẳng giác trong góc $\angle BAC$. Kẻ đường cao $AH$. $AD$ cắt $(J)$ tại điểm thứ hai $X$. Khi đó $NX \parallel EF$. Ta có $\angle OAN = \angle HAD = 90^{\circ} - \angle CDX = 90^{\circ} - \angle NMF = \angle ANJ$.
Do đó tồn tại đường tròn $(O')$ tiếp túc trong cả hai đường tròn $(O)$ và $(J)$.
$AJ$ cắt $ON$ tại $I$. $O'I$ cắt $AN$ tại $P$. Gọi $\alpha_1, \alpha_2$ là đường tròn tâm $I$ tiếp xúc $AB, AC$ và $NL, NK$. Theo định lý $Monge-D'Alambert$, ta có $A$ là tâm vị tự ngoài của $\alpha_1$ và $(J)$, $N$ là tâm vị tự ngoài của $(J)$ và $(O')$, từ đó suy ra $P$ là tâm vị tự ngoài của $\alpha_1$ và $(O')$. Tương tự $P$ là tâm vị tự ngoài của $\alpha_2$ và $(O')$. Suy ra $\alpha_1 \equiv \alpha_2$. Như vậy $AKNL$ ngoại tiếp.

Trong chủ đề: VMF's Marathon Hình học Olympic

10-02-2017 - 19:48

Lời giải bài toán 167:

Dễ thấy rằng $M, N$ thứ tự là tâm bàng tiếp góc $C, B$ của $\triangle ABC$. 

$PQ$ thứ tự cắt $BM, BA, CA, CN$ tại $X, Y, Z, T$. Do $PQ \parallel BC$ nên dễ thấy $\triangle YIB$ cân và ta suy ra $Y$ là trung điểm $IX$. $NB$ cắt $(MNP)$ tại $L$. Thế thì $XL \parallel YB$. Suy ra $XL$ đi qua đối xứng của $I$ qua $MN$. Do $XL$ đối xứng $PQ$ qua $JM$ nên tương tự ta sẽ suy ra được $K$ đối xứng $I$ qua $MN$ và $K \in (MNP)$.

Gọi $S, O$ thứ tự là tâm $(ABC)$ và $(MNP)$. Ta có $I$ là trung điểm $KJ$ $\Leftrightarrow$ $OI \perp KJ$ $\Leftrightarrow$ $IS \perp AD$ $\Leftrightarrow$ $I$ là trung điểm $AD$. Áp dụng định lí Ptolemy ta suy ra $AB+AC=2BC$.


Trong chủ đề: Tuần 1 tháng 2/2017: $QR$ đi qua điểm cố định khi $P$...

06-02-2017 - 00:06

Cuối cùng diễn đàn đã mở lại :D

Lời giải:

Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $S$. Dễ thấy rằng $BE$ cắt $CF$ tại $K$ là đối xứng của $P$ qua $(O)$. $BR, CR$ thứ tự cắt $(O)$ tại $X$, $Y$. Theo giả thiết ta có $PX=PY$. Theo IMO Problem 4 ta có $SR=SA$. Mặt khác $AK \perp AR$, $AS \perp AO$ nên $\triangle AOK \stackrel{+}{\sim} \triangle ASR$. Kẻ tiếp tuyến $SZ$ khác $SA$ thì $Z$ cố định và $\angle AZR = \frac{1}{2} \angle ASR = \frac{1}{2} \angle AOK  = \angle APK = \angle AZK$ nên $KR$ đi qua $Z$. 

Ta có $ABZC$ là tứ giác điều hòa nên $K(AREF)=K(AZBC)=-1$, mặt khác theo tính chất hàng điểm cơ bản ta có $A(KQEF) = A(KQCB)=-1$ nên $A(KQEF)=K(AREF)$ hay $Q$ thuộc $KR$ do $E, F, Q$ thẳng hàng. Vậy $QR$ đi qua $Z$ cố định


Trong chủ đề: VMF's Marathon Hình học Olympic

18-01-2017 - 00:26

Bài toán 133':

Cho $\triangle ABC$ với hai đường thẳng bất kì $d, d'$ cắt nhau tại $H$. $d$ cắt $AB, AC$ tại $F, E$ và $d'$ cắt $AB, AC$ tại $N,M$. $BH, CH$ cắt $EN, FM$ tại $P,Q$. Chứng minh $BQ, CP, MN$ đồng quy


Trong chủ đề: Topic ôn thi hình học vào cấp 3 chuyên

17-01-2017 - 23:07

Lời giải bài 4:
1) Gọi $S$ là đối xứng của $A$ qua $M$. Ta sẽ chứng minh $S$ thuộc $(HEP)$ và $(HFQ)$. Thật vậy, kẻ hình bình hành $HSET$  ta có $AFHT$ là hình bình hành. Do đó $\widehat{AEH}=\widehat{AFH}=\widehat{ATH}$ nên tứ giác $ATEH$ nội tiếp, suy ra $\widehat{HPE}=\widehat{HAE}=\widehat{HTE}=\widehat{HSE}$ hay $S \in (HPE)$. Tương tự ta có $S \in (HFQ)$.
2) Gọi $X, Y$ là tâm $(HPE), (HQF)$. Khi đó ta có $\widehat{HYS}=2\widehat{HES}=2\widehat{EHT}=2\widehat{EAT}=2\widehat{SFH}=\widehat{SXH}$. Do đó $\triangle HXS =\triangle HYS$ nên ta có đpcm.