Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


STARLORD

Đăng ký: 26-10-2015
Offline Đăng nhập: 30-08-2017 - 21:32
-----

Bài viết của tôi gửi

Trong chủ đề: Phương pháp truy ngược biểu thức tính tổng của một dãy số

18-06-2017 - 19:04

Éc, nick longmy là của anh/chị Mai Hoàn Hảo trên facebook đó hả :v

em Hùng nolan thánh bóc phốt''s đây :v


Trong chủ đề: TOPIC ôn thi Olimpic 30/04 và thi HSG toán 10

09-01-2016 - 21:00

Góp một bài BPT

$\sqrt{x^{2}+4}+2\sqrt{x^{2}-4x+5}\leq 5$


Trong chủ đề: \sqrt{x^{2}+4}+2\sqrt{x^{2}-...

07-01-2016 - 22:38

nghiệm của BPT trên volframalpha http://www.wolframal...{2}-4x+5}\leq 5


Trong chủ đề: TOPIC ôn thi Olimpic 30/04 và thi HSG toán 10

07-01-2016 - 19:51

http://diendantoanho...ề-thi-chọn-hsg/


Trong chủ đề: TOPIC ôn thi Olimpic 30/04 và thi HSG toán 10

07-01-2016 - 19:49

Đề 1 - Vòng 1 - Lớp 10 năm 2015 ( thời gian làm bài : 150 phút )

Câu I ( 8.0 điểm )

1. Giải phương trình $2x^{2}+2x+5=(4x-1)\sqrt{x^{2}+3}$

2. Giải hệ phương trình 

$\left\{\begin{matrix}

\frac{x^{2}+y^{2}}{xy}+\frac{2}{x+y}=\frac{1}{xy}  \\ x^{2}+y^{2}-\frac{1}{x+y}=-x^{2}+2x+1

 

\end{matrix}\right.$

Câu II ( 6.0 điểm )

1. Cho tam giác ABC có các cạnh BC=a, CA=b, AB=c và các góc A, B, C

a. Chứng minh $b^{2}=a^{2}+ac$ khi và chỉ khi B=2A

b. Tìm tam giác ABC có B=2A và ba cạnh có số đo là ba số tự nhiên liên tiếp

2. Cho đường tròn (C) : $x^{2}+y^{2}-2x-y-5=0$ và đường thẳng $\triangle $ : $3x+4y-5=0$

a. Chứng minh đường thẳng $\triangle $ cắt đường tròn (C) tại hai điểm phân biệt B,C

b. Tìm tọa độ A $\in $ (C) sao cho tam giác ABC có bán kính đường tròn nội tiếp r=1

3. Cho tam giác ABC không đều thỏa mãn $a^{2}=4S.cosA$, trong đó a=BC và S là diện tích tam giác ABC. Gọi O và G theo thứ tự là tâm đường tròn ngoại tiếp và trọng tâm tam giác ABc. tính góc giữa 2 đường thẳng AG và OG

Câu III ( 6.0 điểm )

1. cho x,y > 0 thỏa mãn $x+y+2=3(\frac{x-1}{y}+\frac{y-1}{x})$

Tìm GTNN: $P=(x-y)^{2}(\frac{x^{2}}{y^{4}}+\frac{y^{2}}{x^{4}}-\frac{3}{xy})$

2. Cho x,y,z dương thỏa x + y+ z = 3

Tìm GTNN $P=2(x^{3}+y^{3}+z^{3})-(x^{2}+y^{2}+z^{2})+2xyz+3$
 Cho $a\geq 0$, $b\geq 0$, $0\leq c\leq 1$, $a^{2}+b^{2}+c^{2}=3$
Tìm GTLN, GTNN $P=2ab+3bc+3ca+\frac{6}{a+b+c}$