Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


hoaichung01

Đăng ký: 18-11-2015
Offline Đăng nhập: 05-01-2018 - 21:38
*****

Bài viết của tôi gửi

Trong chủ đề: Đề cử Thành viên nổi bật 2016

07-01-2017 - 20:32

1) Tên nick ứng viên  : I Love MC , baopbc , bangbang1412, Zaraki .

2) Thành tích nổi bật  : luôn tích cực tham gia thảo luận cho TOPIC diễn đàn 

3) Ghi chú : ko có 


Trong chủ đề: Chứng minh A,F,I thẳng hàng

05-01-2017 - 12:23

Tam giác ABC nhọn nội tiếp (O).M trung điểm BC.Trung trực AB,AC cắt AM tại D và E.BD cắt CE tại F.Một Đường tròn (w) qua B và C cắt AB,AC tại H,K.I trung điểm HK.CHứng minh A,F,I thẳng hàng

Chứng minh AF là đường đối trung của tam giác ABC


Trong chủ đề: Chứng minh EP=FQ

04-01-2017 - 22:02

bạn trình bày lời giải ra dùm mình câu a thôi có được ko :))

Chứng minh $\angle ACI+\angle ABI =\angle EIF$ là đc :)) bài này chỉ đúng với trường hợp MN đi qua I thôi 


Trong chủ đề: Chứng minh: $PQ$ đi qua $E$.

04-01-2017 - 21:54

mình không hiểu chỗ này lắm

1, Chỗ này mình nghĩ phải là E'H.E'A

2.  1/2.E'H.E'A=E'M.E'A tương đương 1/2 E'H= E'M tức là E trùng E' rồi còn đâu???

sorry bn :)) mình đã sửa :))


Trong chủ đề: CMR: $\frac{x+y+z}{3}\geq \sqrt[...

04-01-2017 - 15:54

Cho $x,y,z$ không âm thỏa mãn: $2(xy+yz+zx)=x^2+y^2+z^2$. 

Chứng minh rằng:

$\frac{x+y+z}{3}\geq \sqrt[3]{2xyz}$

Ta có $\left ( x+y+x \right )^{2}\geq 4(xy+yz+zx)$ (*)

Giả sử $x\equiv max \left \{ x,y,z \right \}$

(*) $\Leftrightarrow \left ( x+y \right )^{2}-2z(x+y)+z^{2}-4xy \geq 0$

$\Leftrightarrow \left ( x+y-z-2\sqrt{xy} \right )\left ( x+y-z+2\sqrt{xy} \right )\geq 0\Rightarrow x+y\geq z+2\sqrt{xy}$

$\Rightarrow \frac{x+y+z}{3}\geq \frac{2z+2\sqrt{xy}}{3}\geq \frac{2z+\sqrt{xy}+\sqrt{xy}}{3}\geq \sqrt[3]{2xyz}$

=> ...