Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


thaotran19

Đăng ký: 20-11-2015
Offline Đăng nhập: 02-08-2016 - 07:51
-----

Bài viết của tôi gửi

Trong chủ đề: Cho phương trình $x^2-ax+1$ có 2 nghiêm $x_1$ và...

27-12-2015 - 08:58

1/ HDG : Cần thêm giả thiết a nguyên dương. Khi đó áp dụng Viet và biểu diễn đa thức đối xứng ta tìm được

$x_{1}^{5}+x_{2}^{5}=a^{5}-5\left ( a^{3}-a \right )$

Do $5\left ( a^{3}-a \right )\vdots 10;250\vdots 10\Rightarrow a\vdots 10$

Kiểm tra được a nhỏ nhất là 50 (Chỉ ra không khó).

 

Bạn có thể giải thích kĩ tại sao dùng Vi-ét ta có thể biết : $x_{1}^{5}+x_{2}^{5}=a^{5}-5\left ( a^{3}-a \right )$ ko? 


Trong chủ đề: Chứng minh rằng: có $1$ bài toán mà có ít nhất $40$ t...

22-12-2015 - 10:55

Trong một kì thi, $60$ thí sinh phải giải $3$ bài toán. Khi kết thúc kì thi, người ta nhận thấy rằng: với $2$ thí sinh bất kỳ luôn có ít nhất $1$ bài toán mà cả $2$ thí sinh đó đều giải được. Chứng minh:

$a)$ Nếu có $1$ bài toán mà mọi thí sinh đều không giải được thì phải có $1$ bài toán khác mà mọi thí sinh đều giải được.

$b)$ Có $1$ bài toán mà có ít nhất $40$ thí sinh giải được.

b) Gọi 3 bài toán đó lần lượt là $A,B,C$

Theo đề bài mỗi thí sinh giải ít nhất 1 bài toán.

  •  Nếu có 1 thí sinh giải đc duy nhất 1 bài toán,ta xét thí sinh đó với các thí sinh khác thì 60 thí sinh đều làm được bài toán đó.
  •  Nếu mỗi thí sinh giải ít nhất 2 bài toán:  Gọi số thí sinh ko giải được bài toán A là a, thí sinh ko giải được bài B là b, số thí sinh ko giải được bài C là c, số thí sinh giải được cả 3 bài toán là d.

                    $=>a+b+c+d=60$

Giả sử ko có bài toán mà ít nhất 40 thí sinh giải được:

$a+b+d($số thí sinh giải được bài toán $C) <40$

$a+c+d($số thí sinh giải được bài toán $B)<40$

$b+c+d($số thí sinh giải được bài toán $A) <40$

Từ đó ta có: $a+b+d+a+c+d+b+c+d<120$

$<=>2(a+b+c+d)+d<120$

$<=>2.60+d<120<=>d<0$(vô lí)

Vậy có 1 bài toán ít nhất 40 thí sinh giải được.


Trong chủ đề: Các bài toán liên quan đến đa thức

22-12-2015 - 08:03

Bài $1$: 

     Cho $P(x)=x^{5}+x^{4}-9x^{3}+ax^{2}+bx+c$. Tìm $P(x)$ biết $P(x)\vdots (x-2)(x+2)(x+3)$

 

Bài 1:

THeo Bezout ta có:

$P(x)\vdots x-2 => P(2)=0 => 4a+2b+c=24$

$P(x) \vdots x+2 => P(-2)=0=>4a-2b+c=-56$

$P(x)\vdots x+3 => P(-3)=0 => 9a-3b+c=-81$

Dùng máy tính giải hệ trên tìm đc a,b,c .


Trong chủ đề: 45 BÀI TOÁN CASIO!

22-12-2015 - 07:54

nếu x lớn quá(khoảng trên 1000) thì bấm bao giờ cho xong?

Nếu x lớn thì bạn cũng phải chịu khó bấm thôi, nhưng tùy vào từng bài mình có thể giới hạn x lại, như bài trên mình giới hạn x>9 á, như vậy sẽ bấm ít hơn.


Trong chủ đề: $\frac{1}{a(b+1)}+\frac{1}...

21-12-2015 - 16:31

Cho a,b,c>0:

CMR: $\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq \frac{3}{abc+1}$

Mình làm theo cách khác nha :D

 

Ta có:

$\dfrac{1+abc}{a(b+1)}=\dfrac{1+a+abc+ab-a-ab}{a(b+1)}=\dfrac{(1+a)+ab(1+c)-a(1+b)}{a(b+1)}=\dfrac{1+a}{a(1+b)}+\dfrac{b(1+c)}{1+b}-1$

Làm tương tự ta có: $\dfrac{1+abc}{b(c+1)}=\dfrac{1+b}{b(1+c)}+\dfrac{c(1+a)}{1+c}-1$

$\dfrac{1+abc}{c(a+1)}=\dfrac{1+c}{c(1+a)}+\dfrac{a(b+1)}{1+a}-1$

 

Áp dụng Cô-si có:

 

$\dfrac{1+abc}{a(b+1)}+\dfrac{1+abc}{b(c+1)}+\dfrac{1+abc}{c(a+1)}$

$=\dfrac{1+a}{a(1+b)}+\dfrac{b(1+c)}{1+b}-1+\dfrac{1+b}{b(1+c)}+\dfrac{c(1+a)}{1+c}-1+\dfrac{1+c}{c(1+a)}+\dfrac{a(b+1)}{1+a}-1$

$=[\dfrac{1+a}{a(1+b)}+\dfrac{a(b+1)}{1+a}]+[\dfrac{b(1+c)}{1+b}+\dfrac{1+b}{b(1+c)}]+[\dfrac{c(1+a)}{1+c}+ \dfrac{1+c}{c(1+a)}]-3 \geq 2\sqrt{\dfrac{1+a}{a(1+b)}.\dfrac{a(b+1)}{1+a}}+2\sqrt{\dfrac{b(1+c)}{1+b}.\dfrac{1+b}{b(1+c)}}+2\sqrt{\dfrac{c(1+a)}{1+c}. \dfrac{1+c}{c(1+a)}}-3 =2+2+2-3=3 $

 

=>$\dfrac{1+abc}{a(b+1)}+\dfrac{1+abc}{b(c+1)}+\dfrac{1+abc}{c(a+1)} \geq 3$

$<=>\dfrac{1}{a(b+1)}+\dfrac{1}{b(c+1)}+\dfrac{1}{c(a+1)} \geq \dfrac{3}{abc+1} (đpcm)$