Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


ThuThao36

Đăng ký: 07-03-2016
Offline Đăng nhập: 26-01-2019 - 22:25
****-

Bài viết của tôi gửi

Trong chủ đề: Toán xác xuất trong đề thi thử đại học

30-04-2018 - 15:03

M góp ý 1 tí: ở chỗ Xác suất để bốc ít nhất 1 bi xanh từ bình 2 có thể tính xác suất để lấy được hai bi đều là vàng, rồi lấy 1 trừ đi: $1-\frac{C_{6}^{2}}{C_{9}^{2}}$.

Thì có vẻ tính toán ít hơn

ok bạn  :icon6:


Trong chủ đề: Toán xác xuất trong đề thi thử đại học

30-04-2018 - 10:01

Gieo hai con súc sắc cân đối đồng chất. Gọi x,y là kết quả số chấm xuất hiện lần lượt của hai súc sắc đó. Có 2 bình, bình 1 đựng 6 bi xanh và 4 bi vàng, bình 2 đựng 3 bi xanh và 6 bi vàng. Nếu x+y lớn hơn hoặc bằng 5 thì 2 bi từ bình 1, còn nếu x+y nhỏ hơn 5 thì bốc 2 bi từ bình 2. Tính xác xuất để bốc được ít nhất một bi xanh

TH1: $x+y< 5$

Kết quả gieo xúc sắc là: $(1;1); (1;2); (1,3); (2,1);(2,2);(3,1)$

=> Xác xuất gieo xúc sắc được $x+y< 5$ là; $\frac{6}{6^{2}}=\frac{1}{6}$

Xác suất để bốc ít nhất 1 bi xanh từ bình 2: $\frac{C_{3}^{1}.C_{6}^{1}+C_{3}^{2}}{C_{9}^{2}}=\frac{7}{12}$

=> Xác suất bốc ít nhất 1 bi xanh ở TH1: $\frac{1}{6}.\frac{7}{12}=\frac{7}{72}$

TH2: $x+y\geq 5$

 Xác xuất gieo xúc sắc được $x+y\geq 5$ là; $\frac{5}{6}$

Xác suất để bốc ít nhất 1 bi xanh từ bình 1: $\frac{C_{6}^{1}.C_{4}^{1}+C_{6}^{2}}{C_{10}^{2}}=\frac{13}{15}$

=> Xác suất bốc ít nhất 1 bi xanh ở TH2: $\frac{5}{6}.\frac{13}{15}=\frac{13}{18}$

Vậy xác suất cần tìm: $\frac{7}{72}+\frac{13}{18}=\frac{59}{72}$


Trong chủ đề: $\left\{\begin{matrix} x_{1}...

06-03-2018 - 23:04

Câu 1: Tìm tất cả các giá trị m thực để dãy: $\left\{\begin{matrix} x_{1}=\sqrt{2018}\\ x_{2}=\frac{m}{x_{n}^2+1} \end{matrix}\right.$ có giới hạn hữu hạn
Câu 2: Chứng minh dãy $\left\{\begin{matrix} x_{1}=1\\x_{n+1}=1+\frac{2018}{x_{n}+1} \end{matrix}\right.$ có giới hạn hữu hạn. Tìm giới hạn đó

Câu 2:

Bằng quy nạp chứng minh được $0< x_{n}< 2019$

Đặt $x_{n+1}=f(x_{n})$

$f(x)=1+\frac{2018}{x+1}\Rightarrow f^{'}(x)=\frac{-2018}{(x+1)^{2}}< 0$

$\Rightarrow f(x)$ nghịch biến

Do $x_{1}< x_{2}$ nên$(x_{2n})$ là dãy giảm và $(x_{2n+1})$ là dãy tăng

$(x_{n})$ bị chặn nên $(x_{n})$ có giới hạn hữu hạn


Trong chủ đề: $\frac{a}{\sqrt{a+ 2b}}+...

04-03-2018 - 16:36

Cho a, b, c là các số thực dương thỏa $a+ b+ c= 9$. Chứng minh BĐT $\frac{a}{\sqrt{a+ 2b}}+ \frac{b}{\sqrt{b+ 2c}}+ \frac{c}{\sqrt{c+ 2a}}\geq 3$

$\frac{a}{\sqrt{a+2b}}=\frac{3a}{\sqrt{9}.\sqrt{a+2b}} \geq \frac{6a}{a+2b+9}$

Tương tự với các phân thức còn lại

$VT\geq 6(\frac{a}{a+2b+9}+\frac{b}{b+2c+9}+\frac{c}{c+2a+9})$

$=6(\frac{a^{2}}{a^{2}+2ab+9a}+\frac{b^{2}}{b^{2}+2bc+9b}+\frac{c^{2}}{c^{2}+2ca+9c})$

$\geq 6\frac{(a+b+c)^{2}}{(a+b+c)^{2}+9(a+b+c)}=6.\frac{9^{2}}{9^{2}+9.9}=3$

Dấu "=" xảy ra khi a=b=c=3


Trong chủ đề: $\left\{\begin{matrix} u_{1}...

26-02-2018 - 23:36

cho dạy số u(n) thỏa mạn $\left\{\begin{matrix} u_{1}=u_{2}=1\\ u_{n}=\frac{u_{n-1}^{2}+2}{u_{n-2}} \end{matrix}\right.$ ; (n=3,4,5...)

chứng minh rằng mọi số hạng của dạy đều là số nguyên.

$u_{3}=3$

Từ hệ thức truy hồi: $\left\{\begin{matrix} u_{n-1}^{2}+2=u_{n}u_{n-2}\\ u_{n}^{2}+2=u_{n+1}u_{n-1} \end{matrix}\right.$

Trừ vế cho vế: $u_{n}^{2}-u_{n-1}^{2}=u_{n+1}u_{n-1}-u_{n}u_{n-2}$

$\Rightarrow u_{n}(u_{n}+u_{n-2})=u_{n-1}(u_{n-1}+u_{n+1})$

$\Rightarrow \frac{u_{n}}{u_{n+1}+u_{n-1}}=\frac{u_{n-1}}{u_{n}+u_{n-2}}=...=\frac{u_{2}}{u_{1}+u_{3}}=\frac{1}{4}$

$\Rightarrow u_{n+1}=4u_{n}-u_{n-1}$

Vì $u_{1},u_{2},u_{3}$ nguyên nên mọi số hạng trong dãy đều nguyên (đpcm)