Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


IMOer

Đăng ký: 07-04-2016
Offline Đăng nhập: Hôm qua, 22:49
****-

Bài viết của tôi gửi

Trong chủ đề: Marathon số học Olympic

04-07-2016 - 17:40

P.S: Hình như đề British này tính phí đúng không anh IMOer? Em chưa bao giờ thấy mặt đề British :P

Đề British (2 vòng) được đăng tải khá đầy đủ ở đây. Đáp án chính thức thì anh không thấy public ở đâu cả.

 

Xin nói thêm về bài 65. Đây là bài số 2 trong Mock - IndianMO 2016 được gợi ý bởi Anant (các bạn có thể tìm thêm trên trang mathometer.weebly.com). Lời giải của mình của giống như của anh IMOer, ở đây $2^{2016}$ và $2015$ là các số tượng trưng cho năm, có thể tổng quát thành $m, n$ bất kỳ. :P

Lúc nhìn đề bài 65 là anh cũng nhận ra ngay 2 điều:

- Các số $2^{2016}$ và $2015$ đúng là chỉ mang ý nghĩa tượng trưng.

- Chắc chắn sử dụng định lý thặng dư Trung Hoa.


Trong chủ đề: Marathon số học Olympic

04-07-2016 - 09:15

Lời giải bài 65:
 
Bổ đề: Với $f\left( x \right)\in \mathbb{Z}\left[ x \right]$ khác đa thức hằng thì tồn tại vô số số nguyên tố là ước của ít nhất một phần tử trong tập $\left\{ f(1),f(2),f(3),... \right\}$.
Với $i\ge 2$, gọi ${{p}_{i}}$ là một ước nguyên tố lớn hơn 2015 của $a_{i}^{i}+i$, với ${{a}_{i}}$ là một số nguyên dương nào đó.
Khi đó dễ dàng nhận thấy $\left( i,{{p}_{i}} \right)=\left( {{a}_{i}},{{p}_{i}} \right)=1$ với mọi $i\ge 2$ và theo bổ đề trên ta hoàn toàn có thể chọn các số ${{a}_{i}}$ sao cho các số nguyên tố ${{p}_{i}}$ đôi một phân biệt.
Ta sẽ chứng minh với mọi $n$, tồn tại số nguyên dương ${{x}_{n}}$ sao cho $p_{i}^{n}|x_{n}^{i}+i$     (*).
Với $n=1$ chọn ${{x}_{1}}={{a}_{i}}$.
Giả sử (*) đúng với $n=k$, ta có: $p_{i}^{k}|x_{k}^{i}+i$.
Nếu $p_{i}^{k+1}|x_{k}^{i}+i$ thì chọn ${{x}_{k+1}}={{x}_{k}}$.
Nếu $p_{i}^{k+1}\nmid \ x_{k}^{i}+1$thì ta có: $x_{k}^{i}+i=p_{i}^{k}\left( a{{p}_{i}}+b \right)$ với $\left( b,{{p}_{i}} \right)=1$.
Ta sẽ chọn: ${{x}_{k+1}}=cp_{i}^{k}+{{x}_{k}}$, khi đó: $x_{k+1}^{i}+i={{\left( cp_{i}^{k}+{{x}_{k}} \right)}^{i}}+i\equiv ic{{x}_{k}^{i-1}}p_{i}^{k}+x_{k}^{i}+i\ \left( \bmod \ p_{i}^{k+1} \right)$
Vì $\left( i,{{p}_{i}} \right)=\left( {{x}_{k}},{{p}_{i}} \right)=1$ nên ta sẽ chọn được $c$ sao cho: ${{p}_{i}}|ic{{x}_{k}^{i-1}}+b$.
Theo nguyên lý quy nạp ta chứng minh được (*).
Vậy, với mỗi $i\ge 2$, tồn tại ${{n}_{i}}$ sao cho: $p_{i}^{{{2}^{2016}}-1}|n_{i}^{i}+i$
Xét hệ phương trình đồng dư sau:
\[\left\{ \begin{array}{l} x\equiv -1 & \left( \bmod \ {{2}^{{{2}^{2016}}-1}} \right)  \\ x\equiv {{n}_{2}} & \left( \bmod \ p_{2}^{{{2}^{2016}}-1} \right) \\ x\equiv {{n}_{3}} & \left( \bmod \ p_{3}^{{{2}^{2016}}-1} \right) \\ ... & ...  \\ x\equiv {{n}_{2015}}  & \left( \bmod \ p_{2015}^{{{2}^{2016}}-1} \right)\\ \end{array}\right.\]
Theo định lý thặng dư Trung Hoa, hệ phương trình đồng dư này có nghiệm nguyên dương $x$, khi đó: ${{x}^{i}}+i$ chia hết cho 1 số có dạng ${{p}^{{{2}^{2016}}-1}}$ nên các số này đều có ít nhất ${{2}^{2016}}$ ước.
 
Mình xin đề xuất tiếp 1 bài dễ thở sau:
 
Bài 66: (Nguồn: British MO 2016, round 2)
Giả sử $p$ là một số nguyên tố và tồn tại các số nguyên dương phân biệt $u,v$ thoả mãn $p^2$ là trung bình cộng của $u^2$ và $v^2$. Chứng minh rằng $2p-u-v$ là một số chính phương hoặc bằng 2 lần một số chính phương.

Trong chủ đề: Marathon số học Olympic

27-06-2016 - 15:03

Anh làm hơi vội đoạn này rồi ạ ví dụ $p=61$ và $d=12$

Chỗ đó chỉ suy ra $v_2{(d)}=v_2{(p-1)}$ thôi ạ

Đúng là có hơi tắt chút, nhưng nếu thêm câu $p-1$ có dạng $2^k$ thì chắc là ok rồi.


Trong chủ đề: Marathon số học Olympic

27-06-2016 - 11:15

Lời giải bài 63:

 

*) Với $3^{\frac{p-1}{2}}+1\equiv0\ (\bmod{p})$ thì $3^{\frac{p-1}{2}}\equiv -1\ (\bmod{p})$.

Gọi $d$ là cấp của 3 theo modulo $p$, khi đó: $d\nmid \dfrac{p-1}{2}$.

Mà $3^{p-1}\equiv 1\ (\bmod{p})$ nên $d\mid p-1$, dẫn tới: $d=p-1$. Từ đó suy ra: $p$ là số nguyên tố.

 

*) Với $p$ là số nguyên tố, ta có: $p\equiv 2\ (\bmod{3})$ và $p\equiv 1\ (\bmod{4})$.

Ta có: $\left(\dfrac{3}{p}\right)=\left(\dfrac{p}{3}\right)=\left(\dfrac{2}{3}\right)=-1$.

Nên: $3^{\frac{p-1}{2}}\equiv\left(\dfrac{3}{p}\right)\equiv -1\ (\bmod{p})$.

 

Bài 64: Tìm tất cả các hàm số $f:\mathbb{Z}^+\to\mathbb{Z}^+$ thoả mãn đồng thời:

(i) $f(n)\ge n$ với mọi $n\in\mathbb{Z}^+$.

(ii) $f(m+n)\mid f(m)+f(n)$ với mọi $m,n\in\mathbb{Z}^+$.


Trong chủ đề: Marathon số học Olympic

23-06-2016 - 16:55

Do đã lâu rồi bài 59 vẫn chưa có người giải nên mình up bài 60 vậy

Cho dãy $a_{0}=1,a_{1}=1,a_{n+2}=98a_{n+1}-a_{n}-16$

CMR $a_{n}$ là CP với mọi $n \in \mathbb{N}^{*}$

Lời giải bài 60:

 

Xét dãy: $b_0=1, b_1=1, b_{n+2}=10b_{n+1}-b_n$.

Ta có:

$\begin{aligned}2b_{n+1}^2-b_nb_{n+2}&=2b_{n+1}(10b_n-b_{n-1})-b_n(10b_{n+1}-b_n)\\&=10b_nb_{n+1}-2b_{n+1}b_{n-1}+b_n^2\\&=2b_n^2+b_{n+1}(10b_{n+1}-b_n)-2b_{n+1}b_{n-1}\\&=2b_n^2-b_{n-1}b_{n+1} \end{aligned}$

Dẫn tới: $2b_{n+1}^2-b_nb_{n+2}=2b_1^2-b_0b_2=-8$, với mọi $n\in\mathbb{N}$.

Lại có:

$\begin{aligned}b_{n+2}^2&=100b_{n+1}^2-20b_{n+1}b_n+b_n^2\\&= 96b_{n+1}^2-b_n^2-16+(4b_{n+1}^2-20b_{n+1}b_n+2b_n^2+16)\\&= 96b_{n+1}^2-b_n^2-16+2(2b_{n+1}^2-b_nb_{n+2}+8)\\&= 96b_{n+1}^2-b_n^2-16\end{aligned}$

Từ đó suy ra: $a_n=b_n^2$ với mọi $n\in\mathbb{N}$.

 

Bài 61:

Tìm tất cả các bộ số nguyên dương $(a,b,c,d)$ sao cho nếu số nguyên dương $n$ có tất cả các ước nguyên tố lớn hơn 2016 thì $n+d$ là ước của $n+a^n+b^n+c^n$.