Đến nội dung

phuc_90

phuc_90

Đăng ký: 23-09-2006
Offline Đăng nhập: Riêng tư
****-

#737461 CM $I + A^2$ khả nghịch và hãy tìm nghịch đảo của $I + A^2$

Gửi bởi phuc_90 trong 27-02-2023 - 17:01

Cho $A$ là ma trận vuông cấp $n \ge 2$ thỏa mãn $A^3 = 0$.
(a.) Chứng minh : $I + A + A^2$ khả nghịch và hãy tìm nghịch đảo của $I + A + A^2$
(b.) Chứng minh : $I + A^2$ khả nghịch và hãy tìm nghịch đảo của $I + A^2$

 

a)  $(I+A+A^2)^{-1} = I-A$

 

b)  $(I+A^2)^{-1} = I-A^2$




#735153 Cho $x,y,z$ là các số không âm. Chứng minh rằng: $4(xy+yz+zx)...

Gửi bởi phuc_90 trong 30-09-2022 - 13:40

Gợi ý, áp dụng BĐT Cauchy - Schwarz :  $(ab+cd)^2 \leq (a^2+c^2)(b^2+d^2)$




#731368 Các kiến thức cơ bản về Supremum và Infimum

Gửi bởi phuc_90 trong 29-10-2021 - 16:25

Có bạn hỏi tôi về cách tìm SupremumInfimum của một tập $A\subset \mathbb{R}$ như thế nào ? mong bài viết nho nhỏ này sẽ giúp các bạn hiểu rõ hơn về Supremum và Infimum của một tập hợp $A\subset \mathbb{R}$, từ đó có một phương pháp giải các bài toán dạng này cho riêng mình.

 

Định nghĩa

 

Cho $A$ là tập con khác rỗng của $\mathbb{R}$.

 

$\bullet$   Tập $A$ được gọi là bị chặn trên nếu $\exists M\in\mathbb{R}:\,\,\,a\leq M\,\,,\,\forall a\in A$.

 

Với $A$ là tập bị chặn trên thì Supremum của $A$, ký hiệu $Sup A$ là chặn trên nhỏ nhất của $A$, tức là nếu $m$ là một chặn trên của $A$ thì ta luôn có $Sup A\leq m$.  Nếu tập $A$ không bị chặn trên thì người ta đặt $Sup \,A=+\infty$.

 

$\bullet$   Tập $A$ được gọi là bị chặn dưới nếu $\exists M\in\mathbb{R}:\,\,\,a\geq M\,\,,\,\forall a\in A$.

 

Với $A$ là tập bị chặn dưới thì Infimum của $A$, ký hiệu $Inf A$ là chặn dưới lớn nhất của $A$, tức là nếu $n$ là một chặn dưới của $A$ thì ta luôn có $Inf A\geq n$.  Nếu tập $A$ không bị chặn dưới thì người ta đặt $Inf \,A=-\infty$

 

Một số kết quả liên quan đến Supremum và Infimum

 

Định lý 1:   Cho $A$ là tập con khác rỗng của $\mathbb{R}$ và bị chặn trên. $Sup A=m$ khi và chỉ khi $\left\{\begin{matrix}a\leq m\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*>m-\varepsilon \end{matrix}\right.$.

 

Hơn nữa, nếu $m$ là một chặn trên của $A$ và $m\in A$ thì $Sup A=m$, lúc này $Sup A$ chính là Maximum của tập $A$.

 

Chứng minh

 

$\left ( \Rightarrow  \right )$  Giả sử $Sup A=m$

 

Nếu $\exists \varepsilon >0$ sao cho $m-\varepsilon$ là một chặn trên của $A$ thì $m-\varepsilon \geq Sup A=m$  (vô lý)

 

Vậy $\forall \varepsilon >0$ thì $m-\varepsilon$ không thể là một chặn trên của $A$ hay $\forall \varepsilon >0\,\,,\,\exists\,a^*\in A:\,\,\,a^*>m-\varepsilon$.

 

$\left ( \Leftarrow   \right )$   Giả sử   $\left\{\begin{matrix}a\leq m\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*>m-\varepsilon \end{matrix}\right.$

 

Ta có $a\leq m\,\,,\,\forall a\in A$ nên $m$ là một chặn trên của $A$, do đó $Sup A\leq m$.

 

Đặt $d=m-Sup A\geq 0$, nếu $d>0$ thì theo giả thiết, tồn tại $a^*\in A:\,\,\,a^*>m-d=Sup A$  (vô lý).

 

Vậy $d=0$  hay  $Sup A=m$.

 

Định lý 2:   Cho $A$ là tập con khác rỗng của $\mathbb{R}$ và bị chặn dưới. $Inf A=n$ khi và chỉ khi $\left\{\begin{matrix}a\geq n\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*<n+\varepsilon \end{matrix}\right.$.

 

Hơn nữa, nếu $n$ là một chặn dưới của $A$ và $n\in A$ thì $Inf A=n$, lúc này $Inf A$ chính là Minximum của tập $A$.

(Chứng minh xem như bài tập)

 

Định lý 3:   Nếu $(u_n)_n$ là dãy số thực và là dãy tăng thì $\lim_{n \to \infty } u_n=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

 

Chứng minh

 

Nếu $(u_n)_n$ không bị chặn trên, tức là $\forall M>0\,,\,\exists n_0\in \mathbb{N}:\,\,u_{n_0}>M$  (*)  và  $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}=+\infty$

 

Do $(u_n)_n$ là dãy đơn điệu tăng nên (*) được viết lại thành  $\forall M>0\,,\,\exists n_0\in \mathbb{N}\,,\,\forall n\geq n_0:\,\,u_n>M$

 

Đây chính là định nghĩa của $\lim_{n \to \infty }u_n=+\infty$. Suy ra $\lim_{n \to \infty } u_n=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$.

 

Nếu $(u_n)_n$ bị chặn trên, tức là $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$ tồn tại, đặt $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}=a$

 

Khi đó, theo định lý 1 thì  $\forall \varepsilon >0\,,\,\exists n_0\in \mathbb{N}:\,\,a+\varepsilon >u_{n_0}>a-\varepsilon$, do $(u_n)_n$ là dãy đơn điệu tăng nên điều này được viết lại thành

 

$$\forall \varepsilon >0\,,\,\exists n_0\in \mathbb{N}\,,\,\forall n\geq n_0:\,\,\left | u_n-a \right |<\varepsilon$$

 

Suy ra $\lim_{n \to \infty }u_n=a=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

 

Định lý 4:   Nếu $(u_n)_n$ là dãy số thực và là dãy giảm thì $\lim_{n \to \infty } u_n=Inf\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

(Chứng minh xem như bài tập)

 

 

Phần áp dụng

 

Bài toán 1:   Cho  $A=\left \{ x\in \mathbb{Q}:\,\,x>0\,,\,x^2<2 \right \}$.  Chứng minh rằng  $Sup\,A=\sqrt{2}$

 

Chứng minh

 

Ta có $\sqrt{2}$ là một chặn trên của $A$ nên  $Sup\,A \leq \sqrt{2}$.

 

Đặt  $d=\sqrt{2}-Sup\, A\geq 0$, nếu $d>0$ thì theo nguyên lý Archimedes, tồn tại số nguyên dương $n$ sao cho $nd>1$.

 

Đặt  $Sup \,A=x$ và  $m=[nx]+1$ ta có $nx+1>[nx]+1>nx$  hay  $nx+1>m>nx$

 

Suy ra   $x+\frac{1}{n}>\frac{m}{n}>x$  mà  $x+\frac{1}{n}<x+d=Sup\,A+d=\sqrt{2}$

 

Điều này dẫn đến  $\sqrt{2}>\frac{m}{n}>Sup\,A$   (mâu thuẫn)

 

Vậy  $\sqrt{2}-Sup\,A=d=0$   hay   $Sup\,A=\sqrt{2}$

 


Bài toán 2:   Tìm Supremum và Infimum của

 

a)   $A=\left \{ \frac{1}{2n}\,|\,n\in \mathbb{N}^* \right \}$

 

b)   $B=\left \{ \frac{n}{n+2}\,|\,n\in \mathbb{N}^* \right \}$

 

c)   $C=\left \{ 0.2\,,\,0.22\,,\,0.222\,,\,... \right \}$

 

Giải

 

a)   Ta có $\frac{1}{2n}\leq \frac{1}{2}\,\,,\,\,\forall n\geq 1$ nên $\frac{1}{2}$ là một chặn trên của $A$ và $\frac{1}{2}\in A$ nên theo định lý 1 thì $Sup\,A=\frac{1}{2}$

 

Ta thấy dãy $\left ( \frac{1}{2n} \right )_{n\in\mathbb{N}^*}$  là một dãy giảm và  $\lim_{n \to \infty }\frac{1}{2n}=0$  nên theo định lý 4 thì  $Inf \,A=\lim_{n \to \infty }\frac{1}{2n}=0$

 

b)   Ta thấy dãy $\left ( \frac{n}{n+2} \right )_{n\in\mathbb{N}^*}$  là một dãy tăng và  $\lim_{n \to \infty }\frac{n}{n+2}=1$  nên theo định lý 3 thì  $Sup \,B=\lim_{n \to \infty }\frac{n}{n+2}=1$

 

Với mọi $n\geq 2$ thì $\frac{n}{n+2}\geq \frac{1}{2}$ suy ra $\frac{1}{2}$ là một chặn dưới của $B$, mà $\frac{1}{2}\in B$ nên theo định lý 2 thì  $Inf\,B=\frac{1}{2}$

 

c)   Ta thấy  $C=\left \{ \frac{2}{10}\,,\,\frac{2}{10}\left ( 1+\frac{1}{10} \right )\,,\,\frac{2}{10}\left ( 1+\frac{1}{10}+\frac{1}{10^2} \right )\,,\,... \right \}=\left \{ \frac{2}{9}\left ( 1-\frac{1}{10^n}\right )\,|\,n\in \mathbb{N}^* \right \}$

 

Suy ra  $\frac{2}{10}\leq c<\frac{2}{9}$  với mọi $c\in C$, từ đây ta suy ra được  $Inf\,C=\frac{2}{10}$  và  $C$ bị chặn trên.

 

Đặt  $Sup\,C=s$ suy ra $s\leq \frac{2}{9}$ , ta có  $s-\frac{2}{9.10^n}\leq \frac{2}{9}\left ( 1-\frac{1}{10^n} \right )\leq s$   (**)

 

Cho  $n \to \infty$  thì từ (**) ta có  $s\leq \frac{2}{9}\leq s$.

 

Vậy  $Sup\,C=s=\frac{2}{9}$




#731363 $\sum\limits_{k = 2}^n {\frac{1}{{{S_k}}}} > 2\...

Gửi bởi phuc_90 trong 28-10-2021 - 22:28

Cho $n\epsilon \mathbb{N}, n\geq 2$. Đặt $a_n=1+\frac{1}{2}+...+\frac{1}{n}$ và $S_n=\sum_{i=2}^{n}\frac{a_i}{i}$. Chứng minh rằng với $n> 3$

$\frac{1}{S_2}+\frac{1}{S_3}+...\frac{1}{S_n}> 2(\frac{1}{a_2a_3}+\frac{1}{a_3a_4}+...+\frac{1}{a_{n-1}a_n})$

:D Mong được thảo luận

 

Bổ đề 1:   $a_n > \frac{2n}{n+1}\,\,\,,\,\,\forall n\geq 2$

 

Thật vậy, với $n=2$ thì $a_2=\frac{3}{2}>\frac{4}{3}$, giả sử $a_n > \frac{2n}{n+1}\,\,\,,\,\,n\leq k$.

 

Ta có $a_{k+1}=a_k+\frac{1}{k+1} > \frac{2k}{k+1}+\frac{1}{k+1}=\frac{2k+1}{k+1}>\frac{2(k+1)}{k+2}$

 

Vậy theo nguyên lý quy nạp bổ đề 1 được chứng minh.

 

Bổ đề 2:   $S_n < \frac{a_na_{n-1}}{2}\,\,\,,\,\,\forall n\geq 3$

 

Thật vậy, với $n=3$ thì $S_3=\frac{49}{36} < \frac{33}{24}=\frac{a_2a_3}{2}$

 

Giả sử $S_n < \frac{a_na_{n-1}}{2}\,\,\,,\,\, n\leq k$, khi đó  $S_{k+1}=S_k+\frac{a_{k+1}}{k+1} < \frac{a_ka_{k-1}}{2}+\frac{a_{k+1}}{k+1}$

 

Ta có $\frac{a_{k+1}a_k}{2}-\frac{a_ka_{k-1}}{2}-\frac{a_{k+1}}{k+1}$

 

$=\frac{a_k}{2}\left ( a_{k+1}-a_{k-1} \right )-\frac{a_{k+1}}{k+1}$

 

$=\frac{a_k}{2}\left ( \frac{1}{k}+\frac{1}{k+1} \right )-\frac{a_{k+1}}{k+1}$

 

$=\frac{\left ( 2k+1 \right )a_k-2ka_{k+1}}{2k(k+1)}$

 

$=\frac{\left ( 2k+1 \right )a_k-2k\left ( a_k+\frac{1}{k+1} \right )}{2k(k+1)}$

 

$=\frac{a_k-\frac{2k}{k+1}}{2k(k+1)}$

 

Theo bổ đề 1 thì $\frac{a_{k+1}a_k}{2}-\frac{a_ka_{k-1}}{2}-\frac{a_{k+1}}{k+1}>0$  hay $\frac{a_ka_{k-1}}{2}+\frac{a_{k+1}}{k+1}<\frac{a_{k+1}a_k}{2}$  hay  $S_{k+1}<\frac{a_{k+1}a_k}{2}$

 

Theo nguyên lý quy nạp ta đã chứng minh được bổ đề 2.

 

Trở lại bài toán

 

Theo bổ đề 2, thì   $\frac{1}{S_3}+...+\frac{1}{S_n}>2\left ( \frac{1}{a_2a_3}+...+\frac{1}{a_{n-1}a_n} \right )$

 

Suy ra    $\frac{1}{S_2}+\frac{1}{S_3}+...+\frac{1}{S_n}>2\left ( \frac{1}{a_2a_3}+...+\frac{1}{a_{n-1}a_n} \right )$




#731360 Cho $p\in \mathbb{P}$;$p=3k+2$. CM:...

Gửi bởi phuc_90 trong 28-10-2021 - 20:54

Cho $p$ là số nguyên tố lẻ có dạng $3k+2$. Chứng minh rằng nếu $a^{2}+ab+b^{2}$ chia hết cho $p$ thì cả $a$ và $b$ đều cùng chia hết cho p biết rằng $a$ và $b$ đều nguyên dương

 

Theo định lý Fermat $\left\{\begin{matrix}a^{p}\equiv a\,\,(mod \,p)\\ b^{p}\equiv b\,\,(mod \,p)\end{matrix}\right.$   $\Rightarrow$   $\left\{\begin{matrix}a^{p+1}\equiv a^2\,\,(mod \,p)\\ b^{p+1}\equiv b^2\,\,(mod \,p)\end{matrix}\right.$

 

Khi đó  $\left ( a^3-b^3 \right )\left ( a^{3k}+a^{3k-3}b^3+...+a^3b^{3k-3}+b^{3k} \right )=a^{3k+3}-b^{3k+3}=a^{p+1}-b^{p+1}\equiv a^2-b^2\,\,(mod \,p)$

 

Ta có $p\,|\left ( a-b \right )\left ( a^2+ab+b^2 \right )=a^3-b^3$    nên    $p \,| a^2-b^2=(a-b)(a+b)$   $\Rightarrow$   $p\,| a-b$ hoặc $p\,| a+b$

 

Trường hợp:  $p\,| a-b$ thì từ $p\,|a^2+ab+b^2=\left ( a-b \right )^2+3ab$   $\Rightarrow$   $p\,| 3ab$  $\Rightarrow$  $p\,| a$ hoặc $p\,| b$

 

Nếu $p\,| a$ thì $p\,| a-(a-b)=b$

 

Nếu $p\,| b$ thì $p\,| a-b+b=a$

 

Trường hợp:  $p\,| a+b$ thì từ $p\,|a^2+ab+b^2=\left ( a+b \right )^2-ab \quad \Rightarrow \quad p\,| ab$  $\Rightarrow$  $p\,| a$ hoặc $p\,| b$

 

Lập luận như trên thì ta luôn có $a\,,\,b$ đều chia hết cho $p$




#731298 Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k...

Gửi bởi phuc_90 trong 24-10-2021 - 21:36

Cho A là ma trận vuông cấp 3 thỏa mãn  $A^2-3A+2I=0$

a, Chứng minh: $A$ khả nghịch

b, Tìm $A^{-1}$ theo $A$ và $I$

c, Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k$

 

Ta có  $A^2-3A+2I_n=0 \,\,\,\Rightarrow \,\,\,A\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )A=I_n$

 

nên $A$  khả nghịch và  $A^{-1}=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )$

 

Đặt $|2A-3I_n|=a\in \mathbb{R}$ , ta lại có $(2A-3I_n)(2A-3I_n)=I_n$

 

$\Rightarrow$     $a^2=|2A-3I_n||2A-3I_n|=|(2A-3I_n)(2A-3I_n)|=|I_n|=1$

 

Vậy  $|2A-3I_n|=1$  nếu $a>0$  hoặc  $|2A-3I_n|=-1$  nếu  $a<0$




#731202 LÂM ĐỒNG 2022

Gửi bởi phuc_90 trong 17-10-2021 - 22:59

 

KỲ THI CHỌN HỌC SINH VÀO ĐỘI TUYỀN BỒI DƯỠNG THI HSG QG NĂM 2022
 
Câu 1. (3.0 điểm) Giải phương trình sau trên tập số thực:
$$2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}$$
 
Câu 2. (4.0 điểm) Đặt $f(n)=(n^2+n+1)^2+1$. Cho $a_n=\frac{f(1).f(3)...f(2n-1)}{f(2).f(4)...f(2n)}$ với $n$ là số nguyên dương. Chứng minh rằng $\lim n\sqrt{a_n}=\frac{1}{\sqrt{2}}$

 

 

Câu 1:   Đặt $u=\sqrt[3]{2x^3-3x+1}$ và $v=\sqrt[3]{x^2+2}$ thì phương trình trên trở thành $u^3-v^3+u-v=0$

 

hay $(u-v)(u^2+uv+v^2+1)=0$ , vì $u^2+uv+v^2+1=(u+\frac{v}{2})^2+\frac{3v^2}{4}+1>0$

 

nên $u=v$ hay $2x^3-3x+1=u^3=v^3=x^2+2 \Rightarrow 2x^3-x^2-3x-1=0 \Rightarrow (2x+1)(x^2-x-1)=0$

 

Phương trình này cho ta 3 nghiệm $x_1=-\frac{1}{2}\,\,,\,\,x_2=\frac{1+\sqrt{5}}{2}\,\,,\,\,x_3=\frac{1-\sqrt{5}}{2}$

 

Câu 2:   Ta có $f(n)=(n^2+n+1)^2+1=(n^2+1)^2+2n(n^2+1)+n^2+1=(n^2+1)((n+1)^2+1)$

 

Khi đó  $a_n=\frac{f(1).f(3)...f(2n-1)}{f(2).f(4)...f(2n)}$

 

$=\frac{(1^2+1)(2^2+1)(3^2+1)...((2n-1)^2+1)((2n)^2+1)}{(2^2+1)(3^2+1)(4^2+1)(5^2+1)...((2n)^2+1)((2n+1)^2+1)}$

 

$=\frac{2}{(2n+1)^2+1}$

 

Suy ra  $\lim_{n \to \infty } n\sqrt{a_n}=\lim_{n \to \infty }\sqrt{\frac{2n^2}{(2n+1)^2+1}}=\frac{1}{\sqrt{2}}$
 




#731193 ĐỀ DỰ TUYỂN MÔN TOÁN NĂM 2021-2022 TRƯỜNG PTNK HCM

Gửi bởi phuc_90 trong 17-10-2021 - 15:51

             ĐẠI HỌC QUỐC GIA TP.HCM                                            ĐỀ DỰ TUYỂN MÔN TOÁN NĂM 2021-2022

       TRƯỜNG PHỔ THÔNG NĂNG KHIẾU                                                  Ngày thi :   25/09/2021

----------------------------------------------------------                            Thời gian làm bài 180 phút, không kể thời gian phát đề

 

Bài 1. (5,0 điểm)

 

Cho các số thực dương $a,b,c$ thỏa $a^2+b^2+c^2=3$

 

a)   Chứng minh rằng    $a^{4n}+b^{4n}+c^{4n}+a^nb^n+b^nc^n+c^na^n\geq 6 \,\,\,,\,\,\forall n\in \mathbb{N}$

 

b)   Hỏi bất đẳng thức trên còn đúng khi thay $n=\frac{2}{3}$ ?

 

Bài 2. (5,0 điểm)

 

Cho $n$ là số nguyên dương chẵn, có tổng các ước nguyên dương của nó là số lẻ. Chứng minh rằng tổng các ước chính phương (nhỏ hơn $n$) của $n$ sẽ không nhỏ hơn $\frac{n}{4}$

 

Bài 3. (5,0 điểm)

 

Cho tam giác $ABC$, gọi $A_1\,,\,B_1\,,\,C_1$ lần lượt là các điểm đối xứng của $A\,,\,B\,,\,C$ qua $BC\,,\,CA\,,\,AB$

Chứng minh rằng   $A_1\,,\,B_1\,,\,C_1$  thẳng hàng khi và chỉ khi  $cosA\,cosB\,cosC\,\,=\,\,-\frac{3}{8}$

 

Bài 4. (5,0 điểm)

 

Một quốc gia có $99$ thành phố, khoảng cách giữa hai thành phố bất kì không vượt quá $1000$ km. Hai thành phố thuộc quốc gia này được gọi là "xa nhau" nếu khoảng cách giữa chúng lớn hơn hoặc bằng $500\sqrt{2}$ km. Hỏi quốc gia này có bao nhiêu cặp thành phố xa nhau ?

 

                                                                ---------------------------  HẾT ---------------------------------




#731191 Với các số thực a, b, c thỏa mãn $1 \leq a, b, c \leq 2$,...

Gửi bởi phuc_90 trong 17-10-2021 - 15:22

Giả sử $a\leq b\leq c$.

Ta có $\frac{(b-a)(b-c)}{ab}\Rightarrow \frac{b}{a}+\frac{c}{b}\leq 1+\frac{c}{a}$.

Tương tự $\frac{(b-a)(b-c)}{bc}\leq 0\Rightarrow \frac{b}{c}+\frac{a}{b}\leq 1+\frac{a}{c}$.

Do đó $\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )(a+b+c)\leq 5+2\frac{a}{c}+2\frac{c}{a}$.

Suy ra $VT\leq \left(\frac{2a}{c}+\frac{2c}{a}+5\right)\left(1+\frac{1}{a}+\frac{1}{c}\right)=7\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2a}{c^2}+\frac{2c}{a^2}+\frac{2a}{c}+\frac{2c}{a}+5\leq 7\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2a}{c^2}+\frac{2c}{a^2}+2(a+c)+5=A+5$.

Ta lại có $\frac{(a-1)(a-2)}{a}\leq 0\Rightarrow a\leq 3-\frac{2}{a}$. Tương tự $c\leq 3-\frac{2}{c}$ nên $A\leq 12+3\left(\frac{a}{c}+\frac{c}{a}\right)+\frac{2c}{a^2}+\frac{2a}{c^2}$.

Ta chứng minh: $3\left ( \frac{a}{c}+\frac{c}{a} \right )+\frac{2c}{a^2}+\frac{2a}{c^2}\leq 3+\frac{3}{c}+\frac{2}{c^2}+2c$. (*)

$(*)\Leftrightarrow 2c\left ( 1-\frac{1}{a^2} \right )+3\left ( 1-\frac{1}{a} \right )\geq \frac{2}{c^2}(a-1)$

$\Leftrightarrow \left ( a-1 \right )\left ( \frac{2c(a+1)}{a^2}+\frac{3}{a}-\frac{2}{c^2} \right )\geq 0$. (luôn đúng do $a-1\geq 0$ và $\frac{2c(a+1)}{a^2}+\frac{3}{a}-\frac{2}{c^2}=2c\left ( \frac{1}{a}+\frac{1}{a^2} \right )+\frac{3}{a}-\frac{2}{c^2}\geq \frac{3c}{2}+\frac{3}{2}-\frac{2}{c^2}>0$).

Suy ra ta chỉ cần chứng minh $3+\frac{3}{c}+\frac{2}{c^2}+2c\leq 10\Leftrightarrow \frac{(c-1)(2c^2-5c-2)}{c^2}\leq 0$. (luôn đúng)

Do đó $A\leq 12+10=22\Rightarrow VT\leq 27$.

Đẳng thức xảy ra khi và chỉ khi $a=b=c=1$.

 

Chỗ chữ màu xanh hình như có vấn đề ?

 

Ta luôn có $\frac{a}{c}+\frac{c}{a}\geq \frac{1}{a}+\frac{1}{c}$




#731145 $\sum_{\sigma \in S_n}sgn(\sigma )\,...

Gửi bởi phuc_90 trong 14-10-2021 - 17:44

Bài toán:   Cho $A$ là ma trận vuông cấp $n$ và $\tau \in S_n$

 

Chứng minh rằng         $$\sum_{\sigma \in S_n} sgn(\sigma )\,\,a_{1\sigma (1)}\,\,a_{2\sigma (2)}...\,a_{n\sigma (n)} = \sum_{\sigma \in S_n}sgn(\sigma )\,\,a_{\tau (1)\sigma \tau (1)}\,\,a_{\tau (2)\sigma \tau (2)}...\,a_{\tau (n)\sigma \tau (n)}$$

 

Trong đó, $\tau \sigma = \tau\circ \sigma$




#731102 Tìm tất cả đa thức $P(x),Q(x)$ sao cho $P(Q(x))=Q(P(x))$

Gửi bởi phuc_90 trong 11-10-2021 - 13:49

 

Ta đặt $\displaystyle \deg P( x) =\deg Q( x) =n$ và đặt $\displaystyle R( x) =P( x) -Q( x)$ với $\displaystyle \deg R( x) =k\leqslant n-1$. Ta sẽ chỉ ra $\displaystyle R( x)$ là đa thức đồng nhất hằng. Chú ý rằng ta có thể tách 
$P( P( x)) -Q( Q( x)) =P( P( x)) -Q( P( x)) +Q( P( x)) -Q( Q( x)) =R( P( x)) +Q( P( x)) -Q( Q( x))$
 
Đặt $\displaystyle Q( x) =\sum _{i=1}^{n} a_{i} .x^{i}$ trong đó $\displaystyle a_{n} =1$. 
$Q( P( x)) -Q( Q( x)) =P( x)^{n} -Q( x)^{n} +\sum _{i=1}^{n-1} a_{i}\left[ P( x)^{i} -Q( x)^{i}\right]$
 
Mặt khác $\displaystyle \deg\left( P( x)^{n} -Q( x)^{n}\right) =\deg\left( R( x)\left(\sum _{i=1}^{n-1} P( x)^{i} Q( x)^{n-i-1}\right)\right) =n^{2} -n+k$ nên $\displaystyle \deg( Q( P( x)) -Q( Q( x))) =n^{2} -n+k$ và  $\displaystyle \deg( R( P( x)) +Q( P( x)) -Q( Q( x))) =max\left\{R( P( x)) ,n^{2} -n+k\right\} =n^{2} -n+k$ vì $\displaystyle nk\leqslant n^{2} -n+k$ nên rõ ràng đây là điều không thể xảy ra do vế trái là đa thức 0. Vậy $\displaystyle \deg R( x) =0$ hay $\displaystyle R( x) \equiv c$ và ta có $\displaystyle P( x) =Q( x) +c$ . Thay vào 
 
$Q( P( x)) +c=$$Q( Q( x) +c) +c=Q( Q( x))$
Từ đây đặt $\displaystyle Q( x) =t$ thì suy ra $\displaystyle Q( t+c) +c=Q( t)$ với vô số giá trị $\displaystyle t$ nên $\displaystyle c=0$. Dẫn tới $\displaystyle P( x) \equiv Q( x)$

 

Lời giải này lập luận còn thiếu sót, không rõ ràng, không chính xác.

 

Thiếu sót:  Thiếu trường hợp $deg P \neq deg Q$

 

Không rõ ràng:   Nếu $deg P=deg Q=n$ thì hệ số của biến có số mũ cao nhất của 2 đa thức bạn đang xét tới là chúng bằng 1 hay khác 1. Nếu chúng cùng bằng 1 thì $k\leq n-1$, còn chúng khác nhau thì $k\leq n$.

 

Chỗ lập luận được bôi màu xanh dương. Nếu $k=n-1$ thì sao ? Lúc này $\displaystyle \deg( R( P( x)) +Q( P( x)) -Q( Q( x))) =max\left\{R( P( x)) ,n^{2} -n+k\right\} =n^{2} -n+k=n^2-1$  và  $deg (P(P(x))-Q(Q(x))=n^2-1$ (ở đây tôi xem như bạn đang xét hệ số của biến có số mũ cao nhất của 2 đa thức là bằng 1) thì làm sao có điều vô lý ở đây

 

Không chính xác:   Chỗ lập luận được bôi màu đỏ, bạn phán $VT=P(P(x))-Q(Q(x))$ bằng 0, tôi cũng chào thua :icon6:




#731082 Tìm tất cả đa thức $P(x),Q(x)$ sao cho $P(Q(x))=Q(P(x))$

Gửi bởi phuc_90 trong 10-10-2021 - 14:49

Bài toán:   Tìm tất cả đa thức $P(x)\,,\,Q(x)\in \mathbb{Z}[x]$ sao cho $P(Q(x))=Q(P(x))$




#731081 $2^x=x+1$

Gửi bởi phuc_90 trong 10-10-2021 - 14:45

Giải phương trình sau trên tập số thực: $2^x=x+1$.

 

Đặt $f(x)=2^x-x-1$ , ta thấy $f(0)=f(1)=0$ nên $f(x)$ có nghiệm là   $0\,,\,1$

 

Ta có $f'(x)=2^xln2-1$

 

Cho $f'(x)=0$ ta tìm được nghiệm của $f'(x)$ là   $x_0=-\frac{ln(ln2)}{ln2}\in (0,1)$

 

Bây giờ, nếu $x<0$ thì $f'(x)<0$   suy ra   $f(x)>f(0)=0$   hay  $2^x>x+1$

 

Nếu $0<x\leq x_0$  thì  $f'(x)<0$   suy ra   $f(x)<f(0)=0$   hay  $2^x<x+1$

 

Nếu $x_0<x<1$  thì $f'(x)>0$   suy ra   $f(x)<f(1)=0$   hay  $2^x<x+1$

 

Nếu $1<x$  thì $f'(x)>0$   suy ra   $f(x)>f(1)=0$   hay  $2^x>x+1$

 

Vậy $0\,,\,1$ là tất cả nghiệm của phương trình




#731067 $ P(-x^{2}-x-1)=x^{4}+2x^{3}+2022x^{2...

Gửi bởi phuc_90 trong 09-10-2021 - 21:07

Tìm tất cả các đa thức thỏa mãn với mọi x thuộc R, biết: $ P(-x^{2}-x-1)=x^{4}+2x^{3}+2022x^{2}+2021x+2019 $

 

 

Đặt $G(x)=-x^2-x-1$

 

Từ giả thiết ta có $P(-x^2-x-1)=(x^2+x+1-1)(x^2+x+1+2020)+2019\,\,,\,\,\forall x\in \mathbb{R}$

 

$\Rightarrow P(G(x))=(-G(x)-1)(-G(x)+2020)+2019=(G(x))^2-2019G(x)-1\,\,,\,\,\forall x\in \mathbb{R}$

 

Giả sử $P(x)$ có bậc là $n$ và đa thức $H(x)$ có bậc $n-3$ sao cho $P(x)=x^3H(x)+x^2-2019x-1\,\,,\,\,\forall x\in \mathbb{R}$   (*)

 

Khi đó, $(G(x))^2-2019G(x)-1=P(G(x))=(G(x))^3H(G(x))+(G(x))^2-2019G(x)-1\,\,,\,\,\forall x\in \mathbb{R}$

 

$\Rightarrow (G(x))^3H(G(x))=0\,\,,\,\,\forall x\in \mathbb{R}$

 

Ta thấy $-x^2-x-1=-(x+\frac{1}{2})^2-\frac{3}{4}<0\,\,,\,\,\forall x\in \mathbb{R}$

 

Suy ra đa thức $G(x)=-x^2-x-1$ luôn khác 0 với mọi $x\in \mathbb{R}$

 

Từ đó suy ra $H(G(x))=0\,\,,\,\,\forall x\in \mathbb{R}$, điều này dẫn đến đa thức $H(x)$ có bậc $n-3$ nhưng có vô số nghiệm trong $\mathbb{R}$

 

Suy ra $H(x)=0\,\,,\,\,\forall x\in \mathbb{R}$, từ (*) suy ra được $P(x)=x^2-2019x-1$ chính là đa thức cần tìm




#731062 $e^{A+B}=e^A\,e^B=e^B\,e^A$

Gửi bởi phuc_90 trong 09-10-2021 - 17:36

Bài toán:   Cho $A,\,B$ là các ma trận vuông cấp $n$, cùng lũy linh và giao hoán nhau. Đặt  $e^A=\sum_{i=0}^{+\infty }\frac{1}{i!}\,A^i$

 

Chứng minh rằng  $e^{A+B}=e^A\,e^B=e^B\,e^A$

 

Ma trận $A$ được gọi là lũy linh nếu tồn tại $n\in \mathbb{N}$ sao cho $A^n=0$