Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


moonkey01

Đăng ký: 22-05-2016
Offline Đăng nhập: Hôm nay, 12:50
****-

Bài viết của tôi gửi

Trong chủ đề: VMF's Marathon Hình học Olympic

15-02-2017 - 12:28

Bài toán 170: Cho $\triangle ABC$. $M\in (BC)$ sao cho $M$ nằm trog $\triangle ABC$. Gọi $D,E,F$ lần lượt là hình chiếu của $M$ trên $BC,CA,AB$. $ME$ cắt $AB$ tại $P$, $MF$ cắt $AC$ tại $Q$, $PQ$ cắt $BC$ tại $K$. $H$ đối xứng với $M$ qua trung điểm của $PQ$. CMR: $HK\perp AD$

 

Lời giải sau tham khảo từ Nguyễn Lê Phước trên Facebook.

 

File gửi kèm  170.JPG   29.36K   0 Số lần tải

 

Lời giải: Ta có hai tam giác $PBM$ và $QMC$ đồng dạng g.g do $\angle PBM=90^{\circ}-\angle BMF=\angle QMC$ và $\angle BPM=\angle MQC$, từ đó $\frac{PB}{QM}=\frac{PM}{QC}$. Dễ thấy rằng $MPHQ$ là hình bình hành nên $MQ=HP$ và $MP=HQ$, từ đó $\frac{PB}{PH}=\frac{QH}{QC}$ hay tam giác $PBH$ đồng dạng tam giác $QHC$ (c.g.c). Gọi $R$ là hình chiếu của $H$ trên $BC$ thì $\angle PRQ=\angle PRH+\angle QRH=\angle PBH+\angle QCH=90^{\circ}$, lại theo một bài toán quen thuộc là $ND=NR$ nên các điểm $D,E,F,P,Q,R$ thuộc một đường tròn. Gọi $HK$ cắt $(APQ)$ tại $S$ thì $KD.KR=KP.KQ=KH.KS$ dẫn đến $DSHR$ nội tiếp. Do đó $\angle DSH=90^{\circ}=\angle ASH$ nên $A,S,D$ thẳng hàng. Vậy $AD\perp HK$ $\blacksquare$

 

Một kết quả thú vị cho bài toán: $M.H$ là hai điểm đẳng giác trong tam giác $ABC$.


Trong chủ đề: VMF's Marathon Hình học Olympic

12-02-2017 - 14:42

Theo đề nghị của anh Phương, em đề xuất tiếp bài toán sau của thầy Hùng.

 

Bài toán 169. Cho tam giác $ABC$ có $D$ là điểm bất kỳ trên đường cao từ $A$. Đường tròn $(K)$ đường kính $AD$ cắt $CA,AB$ tại $E,F$. Tiếp tuyến tại $E,F$ của $(K)$ cắt $BC$ tại $M,N$. Gọi $EB$ cắt $FC$ tại $P$, $EN$ cắt $FM$ tại $Q$. Chứng minh rằng $PQ$ luôn đi qua điểm cố định khi $D$ thay đổi.


Trong chủ đề: VMF's Marathon Hình học Olympic

11-02-2017 - 18:19

Theo đề nghị của anh Khánh, em đề xuất bài toán tiếp theo, có lẽ là của anh Phạm Hy Hiếu, HCB IMO năm 2009.

 

Bài toán 168. Cho tam giác $ABC$ nội tiếp $(O)$ có $BC>CA>AB$ và $I$ là tâm nội tiếp. $AI$ cắt lại $(O)$ tại $K$. $M$ là trung điểm $BC$. Gọi $N$ đối xứng với $I$ qua $M$. $KN$ cắt lại $(O)$ tại $L$. Chứng minh rằng $LB=LC+LA$.


Trong chủ đề: VMF's Marathon Hình học Olympic

09-02-2017 - 19:40

Được sự đồng ý của thầy Hùng, em đề nghị bài toán tiếp theo, cũng là 1 bài của thầy.

 

Bài toán 166. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ bán kính $R$ có $I$ là tâm nội tiếp, $AD$ là đường cao. $K$ là điểm trên tia $AD$ sao cho $AK=2R$. $M$ là hình chiếu của $B$ trên $IK$. Gọi $AD$ cắt lại $(O)$ tại $N$. Giả sử rằng $IK\parallel AB$. Chứng minh rằng $MN\parallel ID$.


Trong chủ đề: VMF's Marathon Hình học Olympic

26-01-2017 - 14:11

Bài toán 145 (AoPS). Cho tam giác $ABC$ với $\angle BAC<45^{\circ}$. $D$ ở trong tam giác $ABC$ sao cho $BD=CD$ và $\angle BDC=4\angle BAC$. $E$ là đối xứng của $C$ qua $AB$. $F$ là đối xứng của $B$ qua $AC$. Chứng minh rằng $AD\perp EF$.

 

Lời giải của em như sau:

 

Lời giải bài toán 145: Gọi $O$ là tâm ngoại tiếp tam giác $ABC$ thì $D$ là tâm ngoại tiếp tam giác $OBC$. Đặt $BC=a,CA=b,AB=c$ và bán kính của $(ABC)$, $(OBC)$ lần lượt là $R,r$, ta sẽ chứng minh rằng $DE^2-DF^2=AE^2-AF^2=b^2-c^2$. Thật vậy, dễ dàng tính được $\angle DBE=\angle A+90^{\circ}+\angle B-\angle C$ và $\angle DBE=\angle A+90^{\circ}+\angle C-\angle B$.

 

Lại có các đẳng thức $DE^2=a^2+r^2-2ar\cdot cos\angle DBE, \\DF^2=a^2+r^2-2ar\cdot cos\angle DCF$ và $r=\frac{a}{2sin\angle 2A}=\frac{a}{4sin\angle A\cdot cos\angle A}$ nên ta có:

 

$DE^2-DF^2=2ar(cos\angle DCF-cos\angle DBE)\\= \frac{-a^2\cdot sin(\angle A+90^{\circ})\cdot sin(\angle C-\angle B)}{sin\angle A\cdot cos\angle A}\\=4R^2\cdot sin\angle A\cdot sin(\angle C-\angle B)$

 

Mặt khác $b^2-c^2=2R^2(cos\angle 2C-cos\angle 2B)=4R^2sin(\angle C+\angle B)sin(\angle C-\angle B)$, dẫn đến $DE^2-DF^2=b^2-c^2=AE^2-AF^2$ hay $AD\perp EF$ $\blacksquare$