Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Jiki Watanabe

Đăng ký: 25-05-2016
Offline Đăng nhập: 17-05-2018 - 05:10
***--

Bài viết của tôi gửi

Trong chủ đề: Chứng minh rằng $\frac{27a^2}{c(c^2+9a^2)}+...

28-04-2018 - 12:55

điều cần cm $<=> \frac{3c}{c^2+9a^2} + \frac{4a}{4a^2+b^2} + \frac{18}{4c^2+9b^2}\leq \frac{3}{2}$

mà $<=> \frac{3c}{6ac} + \frac{4a}{4ab} + \frac{18}{12bc}\leq \frac{1}{2a} +\frac{1}{b} +\frac{3}{2c} = \frac{3}{2}$

Tại sao ạ? 


Trong chủ đề: $P = \frac{\sqrt{x+2}}{x+\sq...

10-02-2018 - 23:31

Phương trình trên mình đã biến đổi rất nhiều và khi bình phương lên là bậc 4 (không ở một số dạng đặc biệt)
Làm pt bậc 4 tổng quát thì không dễ tí nào  :icon10:  :icon10:  

Bạn chắc cần chữa lại đề nha 

Nếu sửa lại tử số thành $\sqrt{x+1}$ thì tìm được $x=0$. Chắc là sai ở chỗ đó :) 


Trong chủ đề: $P = \frac{\sqrt{x+2}}{x+\sq...

07-02-2018 - 23:43

Thế thì giải PT đó đi mình chỉ dự đoán PT vô nghiệm thôi chứ chưa chắc chắn mà

Ukm. Cảm ơn đoạn lời giải trước của bạn nha. Nó thực sự rất hay đó :) 


Trong chủ đề: $P = \frac{\sqrt{x+2}}{x+\sq...

07-02-2018 - 22:08

X=0 thay vào không thỏa mãn là chuyện bình thường với lại cái dấu căn là mình đánh nhầm nhưng nhác sửa :)) Nhưng dù gì cách mình đến phần giải phương trình thì chưa triệt để còn P=1 thì đúng rồi đấy. Biết đâu PT vô nghiệm, bạn chứng minh thử xem

P=1 có nghiệm $x\approx 0,1150879947$

Mình bấm máy ra  :)


Trong chủ đề: $P = \frac{\sqrt{x+2}}{x+\sq...

07-02-2018 - 20:21

$\sqrt{x+2}\leq \frac{x+3}{2}=>P\leq \frac{x+3}{2(x+\sqrt{x}+1)}=\frac{(x+\sqrt{x}+1)+(2-\sqrt{x})}{2(x+\sqrt{x}+1)}=\frac{1}{2}+\frac{2-\sqrt{x}}{2(x+\sqrt{x}+1)}$

$x+\sqrt{x}+1=(\sqrt{x}+\frac{1}{2})^{2}+\frac{3}{4}\geq \frac{3}{4};2-\sqrt{x}\leq 2=>P\leq \frac{1}{2}+\frac{4}{3}=\frac{11}{6}=>P=1(x\geq 0=>P> 0)=>\sqrt{x+2}=x+\sqrt{x}+1$

$<=>x+2=x^{2}+x+1+2x\sqrt{x}+2\sqrt{x}+2x<=>2=(x^{2}+2x+1)+2\sqrt{x}(x+1)<=>2=(x+1)(\sqrt{x}+1)^{2}<=>\sqrt{2}=\sqrt{x+1}(\sqrt{x}+1)<=>\sqrt{2}=\sqrt{x+1}(\sqrt{x+2}-x)$<=> $\sqrt{(x+1)(x+2)}-\sqrt{2}-x\sqrt{x+1}=0<=>x(\frac{x+3}{\sqrt{(x+1)(x+2)+\sqrt{2}}}-\sqrt{x+1})=0$

Nhưng chưa chứng minh cái trong ngoặc khác 0 được :(

dấu căn ở dưới mẫu của phân số hình như không chứa cả $\sqrt{2}$ 

mà x = 0 đâu thỏa mãn P nguyên  :wacko:

mặc dù lời giải hay và mình cũng chưa tìm ra lỗi sai nào khác  :mellow:

lạ nhỉ   :blink: