Đến nội dung

Jiki Watanabe

Jiki Watanabe

Đăng ký: 25-05-2016
Offline Đăng nhập: 03-01-2019 - 22:38
***--

#693939 Biết $\alpha+\beta +\gamma=360^{\circ}...

Gửi bởi Jiki Watanabe trong 29-09-2017 - 23:22

Về phía ngoài tam giác ABC dựng các tam giác AMB, BNC, CPA cân có số đo các góc ở đỉnh là AMB $=\alpha $; BNC$=\beta$; CPA$=\gamma $. Biết $\alpha+\beta +\gamma=360^{\circ}$. Tính số đo ba góc của tam giác MNP.




#692157 Tìm giá trị nhỏ nhất của tổng

Gửi bởi Jiki Watanabe trong 02-09-2017 - 22:08

Cho bảng hình vuông kích thước 10x10 được chia thành 100 ô vuông nhỏ. Người ta viết các số tự nhiên từ 1 đến 100 theo trình tự sau: 

- Hàng T1, từ trái sang, viết các số từ 1 đến 10

- Hàng T2, từ trái sang, viết các số từ 11 đến 20

- ....

Cứ như vậy cho đến hết. Sau đó cắt bảng thành các hình chữ nhật có kích thước 2x1 hoặc 1x2. Tính tích của 2 số trong hình chữ nhật nhỏ rồi cộng 50 tích lại với nhau.

Cần phải cắt như thế nào để tổng đó nhỏ nhất và nhỏ nhất là bao nhiêu?




#690592 $\frac{3}{\sqrt{x}+\sqrt{y...

Gửi bởi Jiki Watanabe trong 15-08-2017 - 17:14

thực ra đây là 1 bất đẳng thức dấu bằng xảy ra khi x=4;y=9 mà hình như đề bị sai

$\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}= 2$

có thể là giải phương trình bằng phương pháp bất đẳng thức thì sao ạ .-. 




#690572 $\frac{3}{\sqrt{x}+\sqrt{y...

Gửi bởi Jiki Watanabe trong 15-08-2017 - 10:36

Giải phương trình: $\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=2$




#690482 Chứng minh M di động trên đường tròn cố định

Gửi bởi Jiki Watanabe trong 14-08-2017 - 09:22

Cho $(O;R)$. A cố định nằm trên đường tròn, B di động nằm trên đường tròn. $M \in AB$ sao cho $AM= \frac{2}{3} AB$. Chứng minh M di động trên đường tròn cố định. Tính bán kính đường tròn đó.




#689881 Topic phương trình, hệ phương trình vô tỉ

Gửi bởi Jiki Watanabe trong 07-08-2017 - 23:26

Bài 126:

Giải phương trình: $\sqrt{x(x-1)}+\sqrt{x(x+2)}=2\sqrt{x^2}$.

ĐKXĐ: $x\geq 1$ hoặc $x=0$ hoặc $x\leq -2$

  • Xét $x=0$ ta được $x=0$ là nghiệm của phương trình
  • Xét $x\geq 1$ ta có:

pt$\Leftrightarrow \sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}$

   $\Leftrightarrow x-1+x+2+2\sqrt{(x-1)(x+2)}=4x$

   $\Leftrightarrow 2x-1=2\sqrt{(x+1)(x+2)}$               $(x\geq 0,5)$

   $\Leftrightarrow 4x^2-4x+1=4x^2+4x-8$

   $\Leftrightarrow x=\frac{9}{8}$ (TM)

  • Xét $x\leq -2$ ta có:

pt$\Leftrightarrow \sqrt{1-x}+\sqrt{-x-2}=2\sqrt{-x}$

   $\Leftrightarrow 1-x-x-2+2\sqrt{(1-x)(-x-2)}=-4x$

   $\Leftrightarrow -2x+1=2\sqrt{x^2+x-2}$               $(x\leq 0,5)$

   $\Leftrightarrow 4x^2-4x+1=4x^2+4x-8$

   $\Leftrightarrow x=\frac{9}{8}$ (L)

Vậy tập nghiệm của phương trình là $S=\left \{ 0;\frac{9}{8} \right \}$




#685778 ĐỊNH ĐỀ GOLDBACH

Gửi bởi Jiki Watanabe trong 27-06-2017 - 23:40

Ta có 8 nhóm số nguyên tố “Hưng Phú” như sau:
A1 là tập hợp những số lẻ, có chữ số tận cùng là 1 và chia 3 dư 1.
A3 là tập hợp những số lẻ, có chữ số tận cùng là 3 và chia 3 dư 1.
A7 là tập hợp những số lẻ, có chữ số tận cùng là 7 và chia 3 dư 1.
A9 là tập hợp những số lẻ, có chữ số tận cùng là 9 và chia 3 dư 1.
B1 là tập hợp những số lẻ, có chữ số tận cùng là 1 và chia 3 dư 2.
B3 là tập hợp những số lẻ, có chữ số tận cùng là 3 và chia 3 dư 2.
B7 là tập hợp những số lẻ, có chữ số tận cùng là 7 và chia 3 dư 2.
B9 là tập hợp những số lẻ, có chữ số tận cùng là 9 và chia 3 dư 2.
P (Prime) là tập hợp các số nguyên tố.
Gọi S = A1 A3 A7 A9 B1 B3 B7 B9.
Thì ta có các phát biểu sau:
Thứ nhất: Tập hợp P chắc chắn phải là tập con của tập hợp S, hoặc nói cách khác, tập hợp P chắc chắn phải chứa trong tập hợp S; hoặc nói cách khác nữa, mọi phần tử của tập hợp P đều là phần tử của tập hợp S.

$2\in P$ nhưng $2\notin S$

?? :mellow: ??




#682338 [Thi vào 10] Lương Thế Vinh HN Tìm $\min P=\dfrac{2}...

Gửi bởi Jiki Watanabe trong 29-05-2017 - 21:11

đặt $a=xy+yz+zx, b= x^2+y^2+z^2$ ta có $b+2a=1 => b=1-2a$

P=$\frac{2}{a}+\frac{9}{1-2a}=\frac{4}{2a}+\frac{9}{1-2a} \geq \frac{(2+3)^2}{1}=25$

dấu = xảy ra <=> $\frac{2}{2a}=\frac{3}{1-2a}<=>a=\frac{1}{5},b=\frac{3}{5}$

suy ra $xy+yz+zx=\frac{1}{5},x^2+y^2+z^2=\frac{3}{5}$

có nhiều bộ x,y,z thỏa mãn điều kiện này ví dụ $x=\frac{1}{10},y=\frac{9-\sqrt{37}}{20},z=\frac{9+\sqrt{37}}{20}$

Bạn giải thích chỗ dấu $\geq $ được ko? Mk ko hiểu lắm  :mellow: