Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


yeutoan2001

Đăng ký: 02-07-2016
Offline Đăng nhập: 30-09-2018 - 17:49
-----

Bài viết của tôi gửi

Trong chủ đề: Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

20-09-2017 - 20:56

Ngày 1:

Bài 1: Cho $(a_n)$ xác định bởi công thức sau: $ a_0=1, a_1=4, a_{n+1}=2a_n+3a_{n-1} $. Chứng minh rằng trong dãy số trên không có số nào là bội của $2017$.

Bài 2: Tìm tất cả các đa thức $P(x)$ hệ số nguyên không âm thoả mãn $P(\sqrt [3]{3})=2017$ và $P(1)$ nhận giá trị nhỏ nhất có thể.

Bài 3: Cho tứ giác $ABCD$ nội tiếp $(O)$. $H,K$ là hình chiếu của $A$ lên $CB,CD$. $M,N,P,Q$ lần lượt là trung điểm $AB,AD,CH,CK$. $S,T$ lần lượt thuộc $AH,AK$ sao cho $PS \perp PM, QT \perp QN$. $AP,AQ$ cắt $(O)$ lần thứ hai tại $E,F$. Chứng minh rằng $SE,TF$ cắt nhau trên $(O)$.

Bài 4: Cho 2017 số 0 nằm trên hàng ngang. Mỗi lần ta lấy 10 số liên tiếp và tăng những số đó lên 1 đơn vị. Hỏi sau một số hữu hạn bước, trên hàng ngang có nhiều nhất bao nhiêu số bằng nhau?

 

 

 

 

 

Ngày 2:

Bài 5:  Cho n là số nguyên dương. Giả sử phương trình $\frac {1}{\sqrt [3]{x}} + \frac {5}{\sqrt [7]{y}} = \frac {1}{n}$ có m cặp nghiệm nguyên dương $(x,y)$ và m-1 là số chính phương. Chứng minh rằng n là số chính phương.

Bài 6: Cho 2 đường tròn $(O),(K)$ cắt nhau tại $A,B$ và $K$ nằm trên $(O)$. Tiếp tuyến tại $A$ của $(O)$ cắt $(K)$ lần thứ hai tại $P$, $PB$ cắt $(O)$ lần thứ hai tại $C$. Một đường thẳng bất kỳ qua $P$ cắt $(O)$ tại $M,N$. Tiếp tuyến tại $M,N$ của $(O)$ cắt $AP$ tại $Q,R$. Chứng minh rằng $R,Q,K,C$ thuộc cùng đường tròn.

Bài 7: Cho a,b,c là các số thực thỏa mãn $(a+b)(b+c)(c+a) ≠ 0$. Chứng minh rằng:

$\frac {(a^2-b^2)(a^2-c^2)}{(b+c)^2} + \frac {(b^2-c^2)(b^2-a^2)}{(c+a)^2} + \frac {(c^2-a^2)(c^2-b^2)}{(a+b)^2} \geq 0$

                        Gọi Giao CK và AP là T

                        Gọi RN giao QM là H

        Dễ thấy: TK.TC=TA^2 
Lại có: KAP cân tại K => <KAP=KPA = <KCA=<KCB (DO CK là Phân giác ACB)

=> TK.TC=TP^2

=> TP=TA 

Đường trong O là đường tròn nội tiếp Tam giác HQR nên ba đường RM,HA,QN đồng qui tại điểm Lemone

               =>  (PAQT)=-1 Mà T là TĐ PA => TQ.TR=TA^2=TK.TC  ------->  RQKC nội tiếp                                      


Trong chủ đề: Đề chọn Đội tuyển HSGQG tỉnh Hòa Bình năm 2017-2018

15-09-2017 - 23:11

Câu 1 : Cho dãy số $( x_n )$ thỏa mãn $x_1 = 2 , x_{n+1}=\frac{2x_n+1}{x_n+2}$

Xác định HSTQ Của $x_n$ và tìm $lim x_n$

 

Câu 2 : Cho đường tròn tâm $O$ đường kính $AB$ . Một điểm $H$ thuộc đoạn $AB$ . Đường thẳng qua $H$ vuông góc với $AB$ cắt $(O)$ tại $C$ . Đường tròn đường kính $CH$ cắt $AC,AB,(O)$ tại $D,E,F$

 

a) Chứng minh rằng $AB,DE,CF$ đồng quy

 

b) Đường tròn tâm $C$ bán kính $CH$ cắt $(O)$ tại $P,Q$

Chứng minh rằng $P,Q,D,E$ thẳng hàng

 

Câu 3

a) Tìm tất cả các đa thức $P(x)$ hệ số thực thỏa mãn đồng nhất thức :

$x.P(x-1)=(x-3).P(x)$

 

b) Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn:

$f(xy)+f(x)+f(y)=f(x)f(y)+f(x+y)$  $\forall x,y\in \mathbb{R}$

 

Câu 4 :Cho $a,b,c$ là 3 số nguyên thỏa mãn $a+b+c=a^2.(c-b)+b^2.(a-c)+c^2(b-a)$ 

Chứng minh rằng $a+b+c$ chia hết cho 27

 

Câu 5 : Cho tập $M$ gồm 2017 số dương $a_1;a_2;...;a_{2017}$ . Xét tất cả các tập con $T_i$ khác rỗng của $M$. Gọi $s_i$ là tổng các số thuộc tập $T_i$ nói trên . Chứng minh rằng có thể chia tập hợp tất cả các số $s_i$ được thành lập như vậy thành 2017 tập hợp con khác rỗng không giao nhau sao cho tỷ số của 2 số bất kì thuộc còng một tập hợp con vừa được thân chia không quá 2

       Câu4:

              $ a+b+c=(b-a)(a-c)(b-c)$
Bây giờ ta sẽ chỉ ra dù sao thì $a+b+c$ cũng chia hết cho $3$ 
          Trước tiên: nếu $3$ số $a,b,c$ có cùng số dư khi chia $3$ thì 
                 VP chia hết cho $3$
                       => VT  chia hết cho $3$
         Vậy còn trường hợp $a,b,c$ có bộ số dư khi chia cho ba lần lượt là $0,1,2$

                       Nhưng như vậy thì $a+b+c$  cũng chia hết cho $3$
Vậy $a+b+c$ chia hết cho $3$ nên phải có hai số có cùng số dư khi chia cho $3$:

               Giả sử đó là $a,b$ cùng số dư  .

                     +>Ta giả sử $a,b$ chia cho $3$ cùng dư $0 $

                       => Vp Chia hết cho $3 => c$ chia hết cho $3 =>$ Vp chia hết cho $27 => a+b+c$ chia hết $27$

                    +> Giả sử a,b cùng chia 3 dư $1 =>$ vì $a+b+c$ chia hết cho 3 nên c cũng chia 3 dư 1

                         vậy $a-b,b-c,c-a $ chia hết cho $3 =>a+b+c$ chia hết 27 

                     +> cùng chia 3 dư 2  vì $ a+b+c$ chia hết cho 3 nên. c chia 3 dư 2 

                           Vậy $a-b;b-c;a-c $ chia hết cho $3 => a+b+c$ chia hết 27

===> QED 

               (lười Latex) 


Trong chủ đề: Đề chọn Đội tuyển HSGQG tỉnh Hòa Bình năm 2017-2018

15-09-2017 - 22:38

Câu 1:  Đặt $v_n=\frac{1}{x_{n}+1}$   Hay thay $x_{n}=\frac{1-v_{n}}{v_{n}}$ 

 $=> v_{n+1}=1/3 +1/3.v_n $

           Tới đây dễ tìm được công thức tổng quát và lim 


Trong chủ đề: Đề chọn Đội tuyển HSGQG tỉnh Hòa Bình năm 2017-2018

15-09-2017 - 22:34

Câu 1 : Cho dãy số $( x_n )$ thỏa mãn $x_1 = 2 , x_{n+1}=\frac{2x_n+1}{x_n+2}$

Xác định HSTQ Của $x_n$ và tìm $lim x_n$

 

Câu 2 : Cho đường tròn tâm $O$ đường kính $AB$ . Một điểm $H$ thuộc đoạn $AB$ . Đường thẳng qua $H$ vuông góc với $AB$ cắt $(O)$ tại $C$ . Đường tròn đường kính $CH$ cắt $AC,AB,(O)$ tại $D,E,F$

 

a) Chứng minh rằng $AB,DE,CF$ đồng quy

 

b) Đường tròn tâm $C$ bán kính $CH$ cắt $(O)$ tại $P,Q$

Chứng minh rằng $P,Q,D,E$ thẳng hàng

 

Câu 3

a) Tìm tất cả các đa thức $P(x)$ hệ số thực thỏa mãn đồng nhất thức :

$x.P(x-1)=(x-3).P(x)$

 

b) Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn:

$f(xy)+f(x)+f(y)=f(x)f(y)+f(x+y)$  $\forall x,y\in \mathbb{R}$

 

Câu 4 :Cho $a,b,c$ là 3 số nguyên thỏa mãn $a+b+c=a^2.(c-b)+b^2.(a-c)+c^2(b-a)$ 

Chứng minh rằng $a+b+c$ chia hết cho 27

 

Câu 5 : Cho tập $M$ gồm 2017 số dương $a_1;a_2;...;a_{2017}$ . Xét tất cả các tập con $T_i$ khác rỗng của $M$. Gọi $s_i$ là tổng các số thuộc tập $T_i$ nói trên . Chứng minh rằng có thể chia tập hợp tất cả các số $s_i$ được thành lập như vậy thành 2017 tập hợp con khác rỗng không giao nhau sao cho tỷ số của 2 số bất kì thuộc còng một tập hợp con vừa được thân chia không quá 2

           Câu 2 hình: đề nên sữa lại thành 

                 a: $AB,DC,EF$ đồng qui

                 b: $P,Q,E,F$ thẳng hành
Câu 3: a/  Thay: $x=0 => P(0)=0$
                Thay $x=3 => P(2)=0$

                       $=> P(x)=x(x-2)Q(x)$

 Thế vào trên được $Q(x)=Q(x-1) => Q(x)=C: const $

 Hay $P(x)=Cx(x-2)$


Trong chủ đề: Đề kiểm tra kiến thức hè THPT chuyên LHP Nam Định (môn toán chuyên)

30-08-2017 - 20:19

Câu 2:

   Đặt ẩn phụ x,y,z dễ dàng có điều sau:

         $x+y+z=5$

         $xyz=1$          

Trong x,y,z cũng có số bé hơn 4 chọn đó là z  

Ta cần CM:

   $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$=$(5-z)z+\frac{1}{z}\geq \frac{17}{4}$

   $\Leftrightarrow (2z-1)^2(4-z)\geq 0$ (đúng)