Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


DangHongPhuc

Đăng ký: 09-07-2016
Offline Đăng nhập: 21-05-2018 - 00:10
****-

#708879 $xf'(x)+2f(1-x)=\frac{x}{1+\sqrt{1-x...

Gửi bởi DangHongPhuc trong 20-05-2018 - 22:52

$y=f(x)$ liên tục trên $\left [ 0;1 \right ]$ thỏa mãn $xf'(x)+2f(1-x)=\frac{x}{1+\sqrt{1-x}}$ và $f(1)=1$

Tính $\int_{0}^{1}f(x)dx$




#667986 Euclidea - Game dựng hình bằng thước thẳng và compa

Gửi bởi DangHongPhuc trong 11-01-2017 - 17:47

ai den mu r?

Mình xong hết rồi




#666929 Violympic

Gửi bởi DangHongPhuc trong 04-01-2017 - 16:54

Ở chỗ tớ chưa học đến BĐT Bunhia cho 2 bộ số nên mình không biết, mong cậu thông cảm. Cho mình xin lỗi, bọn mình chỉ hay dùng bất đẳng thức Bunhia loại thường thôi. :icon6:

Bạn có thể sử dụng BĐT Bunyakovsky ở dạng thương $\frac{a^2}{x}+\frac{b^2}{y}\geq \frac{(a+b)^2}{x+y}$. Để chứng minh thì chỉ cần nhân chéo lên. Bạn có thể dùng BĐT này để chứng minh tổng quát cho nhiều số




#665820 Violympic

Gửi bởi DangHongPhuc trong 25-12-2016 - 18:04

Chắc là đúng đấy
  • tcm yêu thích


#665706 Violympic

Gửi bởi DangHongPhuc trong 24-12-2016 - 09:29

Ừ thì đúng là như vậy nhưng truocws đó bạn phải biết và thực sự hiểu các định lý đó đã. Còn nếu bạn tự mày mò ra cách thì tất nhiên sẽ thông thời gian hơn nhưng có khi chúng đem lại cho bạn những lợi ích không ngờ tới, khi bạn tự nghĩ ra có gì đó thì chắc chắn sẽ nhiều lâu hơn nhiều so với việc bạn học thuộc. Mà có khi bạn còn tìm ra một định lý mới mà các định lý lúc đầu chỉ là một hệ quả của nó thôi thì sao
  • tcm yêu thích


#665624 Violympic

Gửi bởi DangHongPhuc trong 23-12-2016 - 17:22

Thực ra mấy bài toán của bạn chưa cần thiết lắm phải biết đến nhiều định lý làm gì (biết được nhiều cũng không sao), nó có thể làm cho bạn bị rối. Bạn nên tập cách tư duy sáng tạo thì tốt hơn, cách đó áp dụng được cho rất nhiều bài, còn mỗi định lý trong 1 bài thi thì chắc chỉ áp dụng được cho 1 bài thôi. Với cả toán lớp 8 thì cũng không khó lắm để nghĩ ra cách giải cho mấy bài toán như bài đa giác ở trên chẳng hạn.

Đó chỉ là ý kiến riêng của mình thôi, còn cách nào bạn thấy hiệu quả với mình thì bạn học :)




#665479 Violympic

Gửi bởi DangHongPhuc trong 22-12-2016 - 17:05

http://daynhauhoc.s3...3af1ad9f7b7.png

Giả sử tứ giác đều (nội tiếp đường tròn).

Nối từ tâm của tứ giác tới tất cả các đỉnh của tứ giác, ta sẽ được $n$ tam giác cân

Xét 1 tam giác. Gọi góc ở đỉnh là $\alpha$, góc ở đáy là $\beta$

Ta có $\left\{\begin{matrix} 2\alpha=180^{\circ}-\beta & \\ \beta =\frac{360^{\circ}}{n} & \end{matrix}\right.$

$\Rightarrow 2\alpha=180^{\circ}-\frac{360^{\circ}}{n}$

Mặt khác, ta lại thấy rằng $2\alpha n=2160^{\circ}$

$\Rightarrow 180^{\circ}n-360^{\circ}=2160^{\circ}\Rightarrow n=14$

Vậy đa giác có 14 cạnh


  • tcm yêu thích


#665477 Violympic

Gửi bởi DangHongPhuc trong 22-12-2016 - 16:42

Anh LinhToan có thể giải thích cho em thêm 1 xíu là vì sao ta có thể cộng 2 ngoặc trị tuyệt đối với nhau không ạ, em chưa biết tới tính chất |a + b| + |c + d| >= |a + b + c + d|

Tính chất đó là như vậy nhé $\left | A+B \right |\leq \left | A \right |+\left | B \right |$

Ta có:

$\left ( \left | A+B \right | \right )^2=\left ( A+B \right )^2=A^2+B^2+2AB$

$\left ( \left | A \right |+\left | B \right | \right )^2=A^2+B^2+2\left |A \right |\left | B \right |$

Ta thấy rằng $2AB\leq 2|A||B|$

Dấu $=$ xảy ra khi và chỉ khi $AB\geq 0$

Cái này cũng dễ hiểu thôi, ví dụ $\left | 1+1 \right |= \left | 1 \right |+\left | 1 \right |$ và $\left | 1-1 \right |< \left | 1 \right |+\left | -1 \right |$


  • tcm yêu thích


#665476 Violympic

Gửi bởi DangHongPhuc trong 22-12-2016 - 16:30

Anh DangHongPhuc sai chỗ này rồi !

(a - b)^2 = a^2 - 2*a*b + b^2 chứ không phải (a-b)^2 = a^2 - 2*a*b - b^2

Cảm ơn bạn nhé, mình sẽ sửa ngay


  • tcm yêu thích


#665364 Violympic

Gửi bởi DangHongPhuc trong 21-12-2016 - 17:48

Tam thức bậc hai lớp 8 chưa học đâu, nó liên quan đến $\Delta$ mà

 

 

Xong là xong thế nào anh ?

Cách này có dài dòng quá không ạ ?

Thực ra $\Delta$ chỉ là cách gọi thôi, còn phần lớp 9 là dùng $\Delta$ để giải phương trình bậc hai. Đó là cách làm tổng quát rồi, ngoài cách đó ra thì không còn cách khác đâu, mình chỉ viết ra cho tcm hiểu để áp dụng cho tất cả các bài toán dạng đó thôi.

Còn về câu hỏi của tcm, nó không dài dòng quá đâu, do giải tổng quát nên trông thế thôi chứ thay số và là gọn ngay ý mà, chỉ 2 dòng thôi.




#665240 Violympic

Gửi bởi DangHongPhuc trong 20-12-2016 - 17:38

Các bài tìm giá trị lớn nhất và nhỏ nhất của tam thức bậc hai (tam thức bậc hai có dạng $ax^2+bx+c$) đều có 1 cách làm chung (nếu $a$ âm thì tìm được max còn nếu $a$ dương thì tìm được min)

Xét tam thức bậc hai $ax^+bx+c$

$ax^2+bx+c=a\left ( x^2+\frac{b}{a}x+\frac{c}{a} \right )=a\left ( x^2+2x\frac{b}{2a}+\frac{b^2}{4a^2}-\frac{b^2-4ac}{4a^2} \right )=a\left ( x^2+2x\frac{b}{2a}+\frac{b^2}{4a^2} \right )-\frac{b^2-4ac}{4a^2}=a\left ( x+\frac{b}{2a} \right )^2-\frac{b^2-4ac}{4a^2}$

Đến đây thì xong rồi


  • tcm yêu thích


#665235 Cách báo lỗi vi phạm (dành cho thành viên) và xử lý báo cáo vi phạm (dành cho...

Gửi bởi DangHongPhuc trong 20-12-2016 - 17:06

em thấy có nhiều th đó rồi có gì em sẽ báo cáo cho

hihihihi :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:

Có những bài viết trong góc giải trí nên bạn đừng nhầm với spam hay là quảng cáo nhé




#665035 Violympic

Gửi bởi DangHongPhuc trong 18-12-2016 - 19:22

http://sv1.upsieutoc...17/Capture2.png

Ta có $\widehat{A}=\widehat{B}$ và $\widehat{C}=\widehat{D}$

Giải ra ta được $\widehat{A}=\widehat{B}=60^{\circ}$ $\widehat{C}=\widehat{D}=120^{\circ}$.

Đến đây bài toán trở lại giống bài toán 1 nhưng hình ngược lại


  • tcm yêu thích


#665014 CMR Tổng của 2 số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập...

Gửi bởi DangHongPhuc trong 18-12-2016 - 17:19

Bạn có thể giải thích rõ hơn được không?

Về cái này thì bạn có thể xác định bằng cách: khi $a$ chia cho $3$, số dư có thể nhận $3$ giá trị là $0,1,2$. Bạn lấy $0,1,2$ bình phương lên rồi đem chia cho $3$ thì sẽ ra số dư của $a^2$.


  • 013 yêu thích


#664716 Violympic

Gửi bởi DangHongPhuc trong 15-12-2016 - 16:58

Câu 3:

$-x^2+x+1=-\left ( x^2-x-1 \right )=-\left ( x^2-2\cdot x\cdot \frac{1}{2}+\frac{1}{4}-\frac{5}{4} \right )=-\left ( x-\frac{1}{2} \right )^2+\frac{5}{4}$

Mà $\left ( x-\frac{1}{2} \right )^2\geq 0\Rightarrow -\left ( x-\frac{1}{2} \right )^2\leq 0\Rightarrow -\left ( x-\frac{1}{2} \right )^2+\frac{5}{4}\leq \frac{5}{4}$

Vậy max $y=\frac{5}{4}$

Dấu $"="$ xảy ra $\Leftrightarrow x=\frac{1}{2}$

OK thì Like hộ mình phát nhé  :icon6: