Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


OldMemories

Đăng ký: 09-07-2016
Offline Đăng nhập: Hôm nay, 11:11
-----

Chủ đề của tôi gửi

Có 3 hộp đựng bi

Hôm nay, 10:40

Có 3 hộp đựng bi, hộp thứ nhất đựng 10 bi xanh, hộp thứ hai đựng 5 bi xanh và 5 bi đỏ,
hộp thứ ba đựng 10 bi đỏ. Người ta chọn ngẫu nhiên một hộp, sau đó bốc ngẫu nhiên 2 viên bi
từ hộp đó thì được cả 2 bi màu xanh. Hỏi nếu tiếp tục bốc thêm 1 viên bi nữa ở hộp đó (hai bi đã
bốc trước đó không được trả lại vào hộp) thì xác suất bốc được bi xanh bằng bao nhiêu?


$(\frac{a^{2}}{b-c})^{2}+ (\frac{b^{2}}{c-a})^{2} + (\frac{c^{2}}{a...

10-10-2017 - 22:58

Cho a, b ,c là các số thực . Chứng minh rằng 

$(\frac{a^{2}}{b-c})^{2}+ (\frac{b^{2}}{c-a})^{2} + (\frac{c^{2}}{a-b})^{2}\geq 2.$


Số fibonacci trong tổ hợp

06-10-2017 - 17:24

$1$ . Cho $n \in \mathbb{N}*$ và $S = \left \{ 1,2,....,n \right \}$ . Gọi $c_{n}$ là số các tập con của S chỉ chứa đúng 2 số nguyên dương liên tiếp . Chứng minh rằng : $c_{n}= \frac{2nF_{n+1}-(n+1)F_{n}}{5}$ với $F_{n}$ là số Fibonacci thứ n

$2$ . Cho 2000 học sinh tham gia 1 cuộc thi trắc nghiệm gồm 5 câu hỏi , mỗi câu hỏi có 4 phương án trả lời , mỗi học sinh chỉ được chọn 1 trong 4 phương án . Tìm $n \in N$ bé nhất sao cho các học sinh có thể làm bài thi theo cách nào đó mà cứ n học sinh thì luôn tìm được 4 học sinh để 2 học sinh bất kì cũng có bài làm khác nhau ở ít nhất 2 câu


Cho p là số nguyên tố

31-08-2017 - 16:08

Cho p là số nguyên tố , a là số nguyên dương với a , p nguyên tố cùng nhau , x nguyên dương bất kì . Chứng minh

 $a^{p^{x}(p-1)} \equiv 1 \left ( mod p^{x+1} \right )$


Cho 12 số nguyên tố phân biệt

21-08-2017 - 22:34

$1$ . Chứng minh rằng trong 12 số nguyên tố phân biệt luôn chọn được 6 số , gọi là $a_{1}, a_{2},.....,a_{6}$ sao cho tích $P \doteq (a_{1}-a_{2})(a_{3}-a_{4})(a_{5}+ a_{6})$ chia hết cho $1800$

$2$. Có 2002 quả bóng được đánh số thứ tự từ 1 đến 2002 thuộc 6 màu : xanh , đỏ , tím , vàng , trắng , đen ( mỗi quả  1 màu ) . Chứng minh rằng có ít nhất 1 quả bóng mà số thứ tự của nó bằng tổng số thứ tự của 2 quả bóng cùng màu , hoặc gấp đôi số thứ tự 1 quả bóng cùng màu khác