Đến nội dung

Kamii0909

Kamii0909

Đăng ký: 26-08-2016
Offline Đăng nhập: 26-07-2022 - 16:44
**---

#669770 CMR: $\sqrt{(a+b-c)(b+c-a)(c+a-b)}\leq \frac...

Gửi bởi Kamii0909 trong 24-01-2017 - 21:39

Chuẩn hóa $a+b+c=1$.
Ta phải chứng minh
$$27a^2b^2c^2+8abc+1 \geq 4(ab+bc+ca)$$
Đặt $f(a,b,c)=27a^2b^2c^2+8abc+1-4(ab+bc+ca)$
Không mất tính tổng quát,$a= \min{a,b,c}$ và đặt $t=\frac{b+c}{2}$
Ta sẽ cmr $f(a,b,c)-f(a,t,t) \geq 0$
$\Leftrightarrow (t^2-bc)\left[ 27a^2(t^2+bc) +8a-4 \right] \leq 0$
Có $bc\leq t^2$ và $a+2t=1$ Thay vào ta đi cmr $\frac{27}{2}a^2(1-a)^2 +8a-4 \leq 0$
Dễ dàng chứng minh điều này với $a \leq \frac{1}{3}$
Kiểm tra $f(a,t,t) \geq 0$ khá đơn giản.


#669214 Tìm min $P=\frac{1}{x^{2}+1}+\fr...

Gửi bởi Kamii0909 trong 21-01-2017 - 20:03

Bài toán nên là $x,y,z$ không âm thì hay hơn( khi đó dấu bằng xảy ra thêm tại $(x,y,z) \sim (0,\sqrt{3},\sqrt{3})$)

Ta sẽ chứng minh rằng $\sum \dfrac{1}{x^2+1} \geq \frac{3}{2}.$

Nhân lên và biến đổi $p,q,r,$ ta đi chứng minh $p^2 +pr +r(p-3r) \geq 12.$

Do $a+b+c \geq 3 \sqrt[3]{abc} \geq 3abc \Rightarrow p \geq 3r,$ nên ta quy về chứng minh $p^2+pr \geq 12.$

Nếu $p^2 \geq 12$ thì bất đẳng thức hiển nhiên đúng. Giả sử $9 \leq p^2 \leq 12.$

Áp dụng bất đẳng thức Schur bậc 3 $r \geq \frac{p(12-p^2)}{9},$ điều phải chứng minh trở thành  $(p^2-9)(12-p^2) \geq 0$ :đúng.




#668675 Chứng minh di chuyển trên 1 đườnng cố định

Gửi bởi Kamii0909 trong 17-01-2017 - 17:10

Cách của mình. Ta sẽ nhắc lại không chứng minh một số kết quả cơ bản sau.
1. Cho tam giác $ABC$ nội tiếp $(O)$. Tiếp tuyến tại $B,C$ của $(O)$ cắt nhau tại $P$. Khi đó $AP$ là đường đối trung đỉnh $A$ của tam giác $ABC$.
2. Trong tam giác $ABC$, đường đối trung đỉnh $A$ cắt $BC$ tại $D$. Khi đó $\frac{DB}{DC}= \frac{AB^2}{AC^2}$
Để xử lí cho gọn, đẹp trước hết ta đi chứng minh bổ đề sau
$\textbf{Bổ đề}$ Cho tam giác $ABC$. Đường đối trung đỉnh $A$ cắt $BC$ tại $Q$. $O,I,J$ lần lượt tâm đường tròn ngoại tiếp tam giác $ABC,AQB,AQC$. Khi đó $OA$ chia đôi $IJ$.
$\textbf{Chứng minh}$
Kẻ $AH,AM$ là đường cao và là trung tuyến của tam giác $ABC$.
Dễ thấy phép vị tự quay tâm $A$ biến $\Delta AIJ \rightarrow \Delta ABC$ biến $H \rightarrow Q$. Mặt khác cũng có $\angle HAM= \angle QAO$ nên biến $ AM \rightarrow AO$. Lại có $AM$ là trung tuyến trong tam giác $ABC$ nên $AO$ là trung tuyến trong tam giác $AIJ$.

$\textbf{Quay lại bài toán}$
Qua $Q$ kẻ đường thẳng $\parallel BC$ cắt $AB,AC$ tại $E,F$. Gọi $I,J$ là tâm đường tròn ngoại tiếp các tam giác $AQE,AQF$.
Theo bổ đề $OA$ chia đôi $IJ$. Ta sẽ chứng minh rằng $O_{1}I=O_{2}J$.
Thật vậy, có $\Delta AIO_{1} \sim \Delta QEB, \Delta AJO_{2} \sim \Delta QFC$ nên ta thu được biến đổi sau.
$$\dfrac{IO_{1}}{JO_{2}}= \frac{IO_{1}}{IA}\cdot \frac{IA}{JA} \cdot \frac{JA}{JO_{2}} = \frac{EB}{QE}\cdot \frac{AB}{AC}\cdot \frac{FQ}{FC}= \frac{AE^2}{AF^2} \cdot \frac{QF}{QE}=1$$
Vậy ta có điều phải chứng minh.


#667825 Chứng minh A,F,I thẳng hàng

Gửi bởi Kamii0909 trong 09-01-2017 - 22:40

Nó quanh quanh cấu hình bài hình của USAMO 2008


#667463 $BM,CN,PD$ đồng quy

Gửi bởi Kamii0909 trong 07-01-2017 - 15:24

Cho tam giác $ABC$ có đường tròn nội tiếp $(I)$ tiếp xúc $BC,CA,AB$ tại $D,E,F$. Đường tròn $(PBC)$ tiếp xúc $(I)$ tại $P$. Gọi $M,N$ là trung điểm $DE,DF$. Chứng minh rằng $PD,BM,CN$ đồng quy.


#667457 $F,M,Y,Z$ đồng viên

Gửi bởi Kamii0909 trong 07-01-2017 - 14:37

Bài này không khó, chắc lấy ý tưởng từ bài Trường Đông năm nay.
$\textbf{Lời giải}$
Kẻ $CH$ cắt $(O)$ tại $K$. $FX$ cắt $AK$ tại $N$.
Dễ thấy $FX=FN$ nên áp dụng định lý con bướm đảo vào tứ giác nội tiếp $AKBC$ tâm $O$ có $OF \perp FX$.
Phần sau dễ rồi.


#667078 Đề Thi VMO năm 2017

Gửi bởi Kamii0909 trong 05-01-2017 - 13:37

Cách của e cho b hình. Hơi dài.
Dễ thấy $RHEF$ điều hòa và $RH \parallel EF$ nên $RS$ chia đôi $EF$. Ta cmr $BP,CQ$ chia đôi $EF$.
Gọi $K$ là giao điểm $BP,CQ$. $G$ là giao điểm $AD,EF$.
Theo định lý Pascal cho 6 điểm $A,D,B,C,P,Q$ có $\overline{K,E,F}$.
Mặt khác dễ thấy $BFEC$ nội tiếp nên $BFGD,CEGD$ nội tiếp.
Có $\angle{BGC}=\angle{BGD}+\angle{CGD}=\angle{BFD}+\angle{CED}=\angle{BKC}$ nên $B,K,G,C$ đồng viên.
Gọi $X$ là giao $BC,EF$.
Có $XB.XC=XE.XF=XG.XK$ mà $(EF,XG)=-1$ nên $K$ là trung điểm $EF$. Ta có đpcm.


#666905 $\frac{a^{2}}{c}+\frac{b^...

Gửi bởi Kamii0909 trong 04-01-2017 - 12:34

Ta có $$\sum \frac{a^2}{c}= \sum \frac{a^4}{a^2c} \geq \frac{(\sum a^2)^2}{\sum a^2c}$$
Ta phải chứng minh
$$\sum a^2 \geq 3(\sum a^2c) \Leftrightarrow (\sum a^2)(\sum a) \geq 3(\sum a^2c) \Leftrightarrow \sum a(a-b)^2 \geq 0$$


#666871 $\sum \dfrac{abc+b+c-a}{a^2+1} \geq...

Gửi bởi Kamii0909 trong 03-01-2017 - 22:23

Với $a,b,c \geq 0$ chứng minh rằng
$\dfrac{abc+b+c-a}{a^2+1}+\dfrac{abc+c+a-b}{b^2+1} +\dfrac{abc+a+b-c}{c^2+1} \geq a+b+c$


#665755 $QF$ tiếp xúc với $(CFM)$

Gửi bởi Kamii0909 trong 24-12-2016 - 20:45

nếu có $GC=GF$ ta suy ra $\widehat{CGM}=180^o-2\widehat{BFC}=90^o ,$ , từ $M$ kể tiếp tuyến $Mx$ của $(G)$ thì có hàng $M(xNBC=-1$ , suy ra $FQ$ tiếp xúc $(G)$ . Bây giờ ta đy chứng min $GF=GC$ , ta có$\frac{DF}{FC}=\frac{Sin\widehat{DBE}}{Sin\widehat{EBC}}=\frac{DE}{DB}.\frac{BC}{EC}=\frac{FO}{DG}$ suy ra tam giác $ODF$ đồng dạng $GCF$ suy ra tam giác $GFC$ cân tại $G$ suy ra $GF=GC$ suy ra dpcm

Bạn chỉ rõ cho mình tại sao $\frac{BC}{EC}.\frac{DE}{DB}=\frac{FO}{DG}$ được không? Bạn viết hơi tắt khúc này.


#665696 $QF$ tiếp xúc với $(CFM)$

Gửi bởi Kamii0909 trong 23-12-2016 - 23:54

Cho hình vuông $ABCD$ nội tiếp $(O)$ và điểm $E$ trên cạnh $CD$. $AE$ cắt $BC$ tại $G$. $BE$ cắt $(O)$ tại $F$. Lấy $M \neq F$ trên $BE$ sao cho $GM=GF$. Gọi $N$ là trung điểm $BC$. $MN$ cắt $CD$ tại $Q$. Chứng minh rằng $QF$ tiếp xúc với $(CFM)$.


#664998 $2^{x}=a^{b}+1$

Gửi bởi Kamii0909 trong 18-12-2016 - 15:17

Với $x=1$ dễ có $a=1$ và $b$ nguyên dương bất kì là nghiệm.
Xét $x \geq 2$
Khi đó $4|L.H.S$ nên dễ có $a,b$ lẻ.
Do $b$ lẻ nên $a+1|a^b+1=2^x$
Do đó $a=2^k -1$($k$ nguyên dương)
Dễ xử lí TH $k=1$.
Xét $k \geq 2$. Khi đó $4|(2^k-1)-(-1)$
Ta có $v_{2}{[(2^k-1)^b+1]}=v_{2}{[(2^k-1)^b-(-1)^b]}\\ =v_{2}{(2^k-1+1)}+v_{2}{(b)}=k=v_{2}{(x)}=x$
Vậy $k=x$ nên $b=1$
Nghiệm là $(a,b,x)=(2^t-1,1,t)$


#664447 Tìm bộ số thỏa mãn

Gửi bởi Kamii0909 trong 12-12-2016 - 11:28

Ta có
$m^2+n^2|(m^2+n^2)(m+n)-mn(m+n)-4$ nên $m^2+n^2|mn(m+n)+4$(1)
Từ đó $m^2+n^2 \leq m^2n +n^2m+4$(2)
Nếu cả 2 số $m,n$ cùng bằng 1 thì (1) thỏa mãn và $m^2+n^2=2$ cũng thỏa mãn.
Ngược lại, KMTTQ giả sử $m>1$
Ta viết lại (2) như sau
$n^2(m-1)+nm^2-m^2+4 \leq 0$
Xét $\Delta$ theo $n$ thì
$\Delta = m^4+4m^3-4m^2-16m+16 \leq 0$ Rõ ràng bất phương trình này vô nghiệm nguyên dương với $m>1$.
Vậy $m=n=1$ là nghiệm duy nhất.
Xử lí theo cách này có thể không dùng điều kiện nguyên tố.


#664444 Tìm các số nguyên tố p thỏa:$p^2+23$ có đúng 6 ước chung.

Gửi bởi Kamii0909 trong 12-12-2016 - 11:10

Nếu $p=2$ thì $A=p^2+23=27(KTM)$. Nếu $p=3$ thì $A=32(TM)$
Nếu $p>3$ thì $4,3|p^2-1$ nên $4,3|p^2+23$. Dễ thấy $p$ sẽ có ít nhất các ước $1,2,3,4,6,12,p^2+23$(vô lý)
Vậy $p=3$ là giá trị duy nhất.


#664362 Tìm $x,y,z\in N^{*}$ sao cho $xyz=x^{2...

Gửi bởi Kamii0909 trong 11-12-2016 - 13:20

Biến đổi về dạng
$z=\frac{x^2+3}{xy+2}$ hay $xy+2|x^2+3 \Rightarrow x^2+3 \geq xy+2 // \Leftrightarrow x^2-xy+1 \geq 0$
Coi đây là phương trình bậc 2 ẩn $x$ thì phải có $\Delta =y^2-4 \leq 0$
Vậy $y=1,2$