Đến nội dung

Kamii0909

Kamii0909

Đăng ký: 26-08-2016
Offline Đăng nhập: 26-07-2022 - 16:44
**---

#658528 $\boldsymbol{Topic}$ Các bài toán số học HSG Toán 8 + 9

Gửi bởi Kamii0909 trong 20-10-2016 - 15:18

Bài 1 :  Nhận xét nếu $a \ge 3$ lúc đó $a+b+c>a+b>3$ 
Khi đó $VT<1$ (vô lí) . Nếu $a=1$ cũng dẫn đến vô lí vì $\frac{1}{a+b}+\frac{1}{a+b+c}=0$ 
Do đó $a=2$ . Biến đổi phương trình về thành $b^2+4b+4+(b+2)c=2c+4b+8 \Leftrightarrow bc+b^2+8b+12=0$ vô lí vì $a,b,c nguyên dương$ 
Bài 2 : Xét số dư của $a,b,c$ cho $3$ ta có đpcm |
 

Câu 1 bạn biến đổi nhầm khúc cuối kìa  :icon6:  :icon6:

Mình làm như sau 
Dễ có $\frac{1}{a}> \frac{1}{a+b}> \frac{1}{a+b+c}\Rightarrow \frac{1}{a}> \frac{1}{3}\Rightarrow a< 3$

Mà $a=1$ cũng vô lý vậy $a=2$

Nhân lên ta có $b(b+c)=4$ mà $b< b+c\Rightarrow b=1,c=3$

Câu 2 $\Leftrightarrow (a+bc)(b+ac)=101^{n}$




#658519 Cho các số thực x, y, z khác 1 và xyz=1. Chứng minh rằng $\sum...

Gửi bởi Kamii0909 trong 20-10-2016 - 12:15

Bạn tham khảo thêm cách khác 
Đặt $a= \frac{x}{x-1}\Leftrightarrow x= \frac{a}{a-1}$

$xyz=1 \Leftrightarrow abc= (a-1)(b-1)(c-1)\Leftrightarrow ab+bc+ac-a-b-c+1=0$

Ta có $(a+b+c-1)^{2}\geq 0\Leftrightarrow a^{2}+b^{2}+c^{2}\geq 1$




#658284 Tìm GTNN của biểu thức: $a^3+b^3+c^3$

Gửi bởi Kamii0909 trong 18-10-2016 - 14:13

Câu 1: Cho 3 số $a, b,c$ không âm và $a+b+c=3$

Tìm GTNN của biểu thức: $a^3+b^3+c^3$

Câu 2: Cho 3 số $a, b,c$ không âm và $a+b+c=3$

Tìm GTNN của biểu thức:$\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ca}$

Câu 2 

Min=0 khi a=b=0,c=3 và các hoán vị
Nếu a,b,c không lớn hơn 2 thì min=$\sqrt[3]{2}$
Max=3
Theo bđt Holder

$\left ( \sum a \right )\left ( \sum b \right )(1+1+1)\geq \left ( \sum \sqrt[3]{ab} \right )^{3}\Rightarrow \sum \sqrt[3]{ab}\leq 3$

Bài ảo qúa  :wacko:  :wacko:  Bạn check lại đề được không ?? @@




#658283 Hỏi có thể khẳng định mỗi số trong 2013 số đã cho lớn hơn 3000 hay không?

Gửi bởi Kamii0909 trong 18-10-2016 - 13:41

Cho 2013 số tự nhiên đôi một khác nhau và khác 0. Biết rằng tổng của 1007 số bất kì luôn lớn hơn tổng của 1006 số còn lại cộng với 2012. Hỏi có thể khẳng định mỗi số trong 2013 số đã cho lớn hơn 3000 hay không?

Bài này nên đưa vào topic Tổ hợp chứ nhỉ :3 
Giải 
Giả sử $a_{1}< a_{2}< ...< a_{2013}$ hay $a_{1}\leq a_{2}-1\leq a_{3}-2\leq ....\leq a_{2013}-2012$

Theo giả thiết ta có 

$\sum_{2}^{1007}a_{i}+a_{1}> \sum_{1008}^{2013}a_{i}+2012\geq \sum_{2}^{1007}a_{i} +1007.1006+2012> \sum_{2}^{1007}+3000$

$\Rightarrow a_{1}> 3000$ từ đó ta có tất cả các số đều lớn hơn 3000




#658048 $Cho x+y+z\geq 12.Tìm min : P=\frac{x}{\sq...

Gửi bởi Kamii0909 trong 16-10-2016 - 12:01

Bổ đề $3\sum a^{2}b\leq \left ( \sum a \right )\left ( \sum a^{2} \right )$

P=$\sum \frac{x}{\sqrt{y}}= \sum \frac{x^{2}}{x\sqrt{y}}\geq \frac{\left ( \sum x \right )^{2}}{\sum x\sqrt{y}}$

Theo bổ đề ta có $3\sum x\sqrt{y}\leq \left (\sum x \right )\left ( \sum \sqrt{x} \right )$

Dự đoán min=6

Ta phải chứng minh

$\left (\sum x \right )^{2}\geq \left 2( \sum x \right )\left ( \sum \sqrt{x} \right )\Leftrightarrow \sum x\geq 2\sum \sqrt{x}$

Mà theo bđt Cauchy-Schwarz $\sum \sqrt{x}\leq \sqrt{3\sum x}$ nên ta phải chứng minh

$\sqrt{\sum x}\geq 2\sqrt{3}\Leftrightarrow \sum x\geq 12$

Bđt cuối luôn đúng nên ta có min=6 khi x=y=z=4 




#658044 $\sum\sqrt[3]{\frac{c}{b+a}}>\frac{\sqrt[3]...

Gửi bởi Kamii0909 trong 16-10-2016 - 11:33

1/ Cho a,b,c>0 thỏa mãn: $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\geq 2$CMR: $abc\leq \frac{1}{8}$
2/ Cho a,b >0, thỏa mãn a+b=1. CMR: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
3/ Cho a,b,c >0 thỏa mãn: a+b+c+d=1. CMR:
$(a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(d+\frac{1}{d})^2\geq \frac{289}{4}$
4/ Cho a,b,c >0. CMR: $\sqrt[3]{\frac{a}{b+c}}+\sqrt[3]{\frac{b}{a+c}}+\sqrt[3]{\frac{c}{b+a}}>\frac{\sqrt[3]{2}}{2}$

Ta có bất đẳng thức sau với mọi a,b,c không âm

$\sum \sqrt[3]{\frac{a}{b+c}}\geq \sum \sqrt{\frac{a}{b+c}}\geq 2$

Dấu bằng xảy ra khi 1 biến =0 và 2 biến còn lại bằng nhau




#658042 Tìm giá trị nhỏ nhất $\sum \frac{x}{xy+1}...

Gửi bởi Kamii0909 trong 16-10-2016 - 11:22

Cho x,y,z  dương ;$x+y+z=1$

Tìm Min

$\frac{x}{xy+1}+\frac{y}{yz+1}+\frac{z}{zx+1}$

Giả sử $x\geq y\geq z$

Theo bất đẳng thức Cheybershev ta có 

$\sum \frac{x}{xy+1}\geq \frac{\sum x}{3}\sum \frac{1}{xy+1}\geq \frac{3}{\sum xy+3}\geq \frac{3}{\frac{1}{3}\left ( \sum x \right )^{2}+3}=\frac{9}{10}$




#658032 Đề chọn đội tuyển học sinh giỏi quốc gia Lào Cai 2016-2017

Gửi bởi Kamii0909 trong 16-10-2016 - 10:32

Câu 1 
Pt 2 tương đương
$\left (\sqrt{x-y+3}-2 \right )\left ( x^{2}+x+2+\sqrt{x-y+3} \right )=0\Leftrightarrow x=y+1$

Thế lại phương trình 1 để giải
Câu 4
Dễ thấy $3|y$

phương trình tương đương $\left ( 3x+4 \right )^{2}=y^{3}+1\Leftrightarrow \left ( 3x+4 \right )^{2}=\left ( y+1 \right )\left ( y^{2}-y+1 \right )$

mà $gcd\left ( y+1,y^{2}-y+1 \right )=gcd\left ( 3y,y+1 \right )=1$ nên

 $\left\{\begin{matrix} y+1=a^{2}\\ y^{2}-y+1=b^{2} \end{matrix}\right.$

Thế 2 phương trình ta có 

$a^{4}-3a^{2}+3-b^{2}=0\Leftrightarrow 4a^{4}-12a^{2}+12-4b^{2}=0$

$\Leftrightarrow \left ( 2a^{2}-2b^{2}-3 \right )\left ( 2a^{2}+2b^{2}-3 \right )=-3$

Giải ra có $a^{2}=b^{2}=1$ hay $\left ( x,y \right )=\left ( -1,0 \right )$




#658024 Đề chọn đội tuyển học sinh giỏi quốc gia Khánh Hòa 2016-2017 (2 ngày)

Gửi bởi Kamii0909 trong 16-10-2016 - 09:06

Câu 2 ngày 1 
$x^{2}+xy+y^{2}\leq 2\Leftrightarrow y^{2}+yx+x^{2}-2\leq 0$

$\Delta = 8-3x^{2}\geq 0\Leftrightarrow 3x^{2}\leq 8$

$5x^{2}+2xy+2y^{2}=3x^{2}+2\left ( x^{2}+xy+y^{2} \right )\leq 12$

Mình không nhìn rõ đề lắm  :(  :(  :( Bạn nào gõ lại được không  :icon6: Mấy cái chỉ số dưới nó cứ mờ mờ ảo ảo :wacko:  :wacko:




#657750 Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Bắc Ninh 2016-2017

Gửi bởi Kamii0909 trong 13-10-2016 - 19:04

Câu bất 

Đặt A=3 hạng tử đầu

$\sum \frac{ab}{3a+4b+5c}= 2\sum \frac{ab}{6a+8b+10c}\leq \frac{1}{72}\sum \left ( 5\frac{ab}{a+c}+5\frac{ab}{a+c}+4\frac{ab}{a+3b} \right )$ 

$A\leq \frac{5}{72}\left ( a+b+c \right )+\frac{1}{72}\left ( a+b+c \right )= \frac{1}{12}\left ( a+b+c \right )= \frac{3}{4}$

AD bất đẳng thức AM-GM

$4(a+b+c)=3a+(a+2c)+3b+(b+2c)\geq 4\sqrt[4]{9ab(a+2c)(b+2c)}$

$\Leftrightarrow \sqrt{ab(a+2c)(b+2c)}\leq 27\Rightarrow VT\leq \frac{77}{108}$




#657053 Chứng minh rằng: $\sum \frac{1}{\sqrt{3+a}}\le...

Gửi bởi Kamii0909 trong 07-10-2016 - 22:04

$\sum \frac{1}{\sqrt{3+a}}\leq \sqrt{3\left ( \sum \frac{1}{a+3 } \right )}$

Ta sẽ chứng minh $\sum \frac{1}{3+a}\leq \frac{3}{4}$

Đổi biến $\left ( a,b,c \right )= \left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )$

Đpcm $\Leftrightarrow \sum \frac{y}{x+3y}\leq \frac{3}{4}\Leftrightarrow \sum \frac{3y}{x+3y}\leq \frac{9}{4}\Leftrightarrow \sum \frac{x}{x+3y}\geq \frac{3}{4}$

Điều này luôn đúng do $\sum \frac{x}{x+3y}= \sum \frac{x^{2}}{x^{2}+3xy}\geq \frac{\left ( \sum x \right )^{2}}{\sum x^{2}+3\sum xy}= \frac{\left ( \sum x \right )^{2}}{\left ( \sum x \right )^{2}+\sum xy}\geq \frac{\left ( \sum x \right )^{2}}{\left ( \sum x \right )^{2}+\frac{1}{3}\left ( \sum x \right )^{2}}=\frac{3}{4}$




#657034 $\sum \frac{4}{a+b} \leq \frac{1}{a}+\frac{1}{b...

Gửi bởi Kamii0909 trong 07-10-2016 - 20:40

Bài 6 $2ab+6bc+2ac=7abc$ <=> $\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\Leftrightarrow 6x+2y+2z=7$

C=$\frac{4}{y+2x}+\frac{9}{z+4x}+\frac{4}{y+z}\geq \frac{\left (2+3+2 \right )^{2}}{6x+2y+2z}=7$ 




#653631 Đề hsg lớp 10 KHTN 2016-2017

Gửi bởi Kamii0909 trong 10-09-2016 - 21:40

Full câu hình  :lol:  :lol:

Gọi (O) cắt (AEF) tại P khác A. I là trung điểm BC.S là trung điểm EF.PI cắt (O) tại H.EF cắt BC tại K.

Có$\widehat{PCK}=\widehat{PFK}$ (cùng phụ với $\widehat{PAB}$ nên PFCK là tứ giác nội tiếp.

$\Delta PEF \sim \Delta PBC$ nên $\frac{PF}{PC}= \frac{EF}{BC}=\frac{FS}{CI}$ suy ra $\Delta PIC \sim \Delta PSF$ => $\widehat{PSK}= \widehat{PIK}$ suy ra PKCI là tứ giác nội tiếp.

Từ các tứ giác nội tiếp PFCK ,PSIK ,PAHC => $\widehat{PKS}=\widehat{PCA}= \widehat{PIS}=\widehat{PHE}$ suy ra OI//AH suy ra AH là đường cao => P cố định

Kẻ PX và PY vuông góc BC,EF =>P,Y,Q thẳng hàng

Mà $\Delta PIX \sim \Delta PSY => \widehat{IPX}= \widehat{SPY} => \widehat{SIP}=\widehat{SPY} => \widehat{SIP}=\widehat{SQP}$ nên SPIQ là tứ giác nội tiếp. Ix là tia đối tia IO. Có $\widehat{HIx}= \widehat{SIP}= \widehat{SPQ}= \widehat{QIx}$ nên Q $\epsilon$ đường thẳng đối của IH qua OI (cố định) 

Hình gửi kèm

  • 01.png