Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


vietdohoangtk7nqd

Đăng ký: 11-10-2016
Offline Đăng nhập: 04-12-2017 - 11:38
***--

Bài viết của tôi gửi

Trong chủ đề: Bài kiểm tra số 2 trường Đông Toán Học miền Nam.

19-11-2017 - 22:37

đề năm nay khó hơn đề năm ngoái nhưng theo cảm nhận cá nhân tôi thì hay hơn vì kiến thức rộng hơn và cần suy nghĩ nhiều hơn, nhất là ngày hai


Trong chủ đề: Maryam Mirzakhani đã qua đời

17-07-2017 - 08:09

chữ tài đi với chữ tai một vần


Trong chủ đề: Tuần 4 tháng 6/2017: Chứng minh rằng đường thẳng $AP$ luôn đi q...

26-06-2017 - 17:06

Phần mềm vẽ hình bạn, lười giất bút lắm.

thấy bạn giỏi hình như vậy mình mê lắm, mình rất thích hình nhưng không giỏi như bạn và các cao thủ khác, chỉ tạm tạm thôi. Qua 2 lần thi 30-4 điểm bạn đều cao hơn mình, thật khâm phục, mà năm nay bạn có đi gặp gỡ toán học không?


Trong chủ đề: Tuần 4 tháng 6/2017: Chứng minh rằng đường thẳng $AP$ luôn đi q...

26-06-2017 - 15:44

Bài 1. Ta sẽ chứng minh $AP$ đi qua $T$ là tâm đường tròn ngoại tiếp tam giác $(OBC)$

Gọi $R$ là tâm đường tròn Euler tam giác $ABC$, $AD$ là đường cao của tam giác thì nhờ biến đổi góc, ta có được:

$\widehat{ABL}=\widehat{ACK}=\widehat{ADR}=\widehat{ABC}-\widehat{ACB}$

Ngoài ra $\dfrac{BL}{AB}=\dfrac{AO}{2AD}=\dfrac{RD}{AD}=\dfrac{CK}{AK}$ nên phép vị tự quay tâm $A$ biến $BC\to LK$ thì biến $D\to R$

Do đó $AR\perp KL$

Áp dụng định lý Desargues cho hai tam giác $ABC$ và $TKL$, ta đưa về bài toán sau:

Cho tam giác $ABC$ nội tiếp $(O)$, $O_a$ đối xứng với $O$ qua $BC$. Trung trực $OB$ cắt $AC$ tại $Y$, trung trực $OC$ cắt $AB$ tại $Z$, trung trực $AO_a$ cắt $BC$ tại $X$. Chứng minh $X, Y, Z$ thẳng hàng.

Nếu gọi $O_b, O_c$ là đối xứng với $O$ qua $AC, AB$ thì $X, Y, Z$ chính là tâm ba đường tròn $(AOO_a), (BOO_b),(COO_c)$, mà ba đường tròn này có tâm đẳng phương là $O$, mà điểm Kosnita lại là tâm đẳng phương của chúng nên $X, Y, Z$ thẳng hàng.

chào bạn Khoa, cho mình hỏi khi bạn giải những bài này, bạn dùng giấy và bút hay có sd phần mềm vẽ hình


Trong chủ đề: Tại sao nhiều bài toán BĐT thế ?

09-05-2017 - 15:23

không chỉ riêng bdt, các lĩnh vực khác của toán cũng thế, bất cứ món nào cũng hay nhưng cũng có mặt những bài spam, do đó phải chọn lọc rồi mới làm thì mới làm như vậy thì mới cảm thấy được cái hay của toán học chứ đừng nên làm một cách mù quáng.