Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


PhungHieu

Đăng ký: 19-11-2016
Offline Đăng nhập: 05-01-2017 - 10:25
-----

Bài viết của tôi gửi

Trong chủ đề: cho x,y>0 va x+y=1

02-01-2017 - 09:42

a)$P= xy+\frac{x}{y}+\frac{y}{x}+\frac{1}{xy}= xy+\frac{1}{16xy}+\frac{x}{y}+\frac{y}{x}+\frac{15}{16xy}\geq \frac{1}{2}+2+\frac{15}{16.\frac{1}{4}}=$

b) Dùng bdt AM GM dựa vào kết quả câu a


Trong chủ đề: $ 2= \sqrt{2 + \sqrt{2 + \sqrt{2 + ...}}} < 2$

01-01-2017 - 16:23

Hôm nay, mình xin giới thiệu tới các bạn một bài toán đã gây tranh cãi khá nhiều trong lớp của mình, và cho đến bây giờ thì mình vẫn chưa có câu trả lời thỏa đáng, vì cả hai phép chứng minh của bài toán tuy mâu thuẫn nhau, nhưng theo nhìn nhận của mình thì chúng... đều đúng cả.

Bài toán

Cho biểu thức:

$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + ...}}}$

Câu hỏi:

a) CMR: $x < 2$ ;

b) Tính $x$.

 

Giải

Thực ra bài toán sẽ không có gì đáng nói nếu kết quả hai câu hỏi rất mâu thuẫn nhau.

a) Dễ thấy: $2 < 4 \Rightarrow \sqrt{2} < 2 \Rightarrow 2 + \sqrt{2} < 4 \Rightarrow \sqrt{2 + \sqrt{2}} < 2 \Rightarrow ... \Rightarrow x < 2.$

Như vậy, câu (a) đã chứng minh thành công $x < 2$ và cách làm này được coi là đúng và trình bày trong rất nhiều sách tham khảo của những tác giả uy tín. Và cách tính $x$ của câu (b) cũng thế, trong rất nhiều sách, được coi là đúng, nhưng cho kết quả trái ngược.

b) Ta có: $x^{2} = 2 + x \Rightarrow x^{2} - x - 2 = 0 \Rightarrow \left\{\begin{matrix} x_{1} = -1\\ x_{2} = 2 \end{matrix}\right..$ Tuy nhiên, do x > 0 nên $x = 2$.

Theo như mình nhận thấy, cả hai phép chứng minh trên đều đúng. Liệu cách giải của một câu nào đó mắc một lỗi cơ bản của toán học chăng? Hay đối tượng gặp vấn đề lại là tính logic của toán học?

Số căng xàng nhiều thì x càng tiến về 2 nên với vô hạn số căng thì x sẽ bằng 2


Trong chủ đề: Nhờ mọi người giúp đỡ

01-01-2017 - 16:16

Bài 1a trước nhé

Từ pt (2) sử dụng tính chất tỉ lệ thức mình suy ra dc x1=x2=...=x69. Xong thay vào pt (1) tìm dc nghiệm


Trong chủ đề: CMR: $\frac{1}{x+y+1}+\frac{1...

01-01-2017 - 16:09

Đặt $x=a^3; y=b^3; z=c^3$ nên abc=1. Bất đẳng thức đã cho tương đương với

$\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\leq 1$

Ta có: $\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}=\frac{1}{(a+b)(a^2-ab+b^2)+1}+\frac{1}{(b+c)(b^2-bc+c^2)+1}+\frac{1}{(c+a)(c^2-ca+a^2)+1}$ $\leq \frac{1}{ac(a+c)+1}+\frac{1}{bc(b+c)+1}+\frac{1}{ca(c+a)+1}=\frac{1}{a^2c+ac^2+abc}+\frac{1}{b^2c+bc^2+abc}+\frac{1}{c^2a+ca^2+abc}=\frac{1}{ac(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ab(a+b+c)}=\frac{a+b+c}{a+b+c}=1$ vì abc=1 $ac=\frac{1}{b}; ab=\frac{1}{c}; bc=\frac{1}{a}$

Dấu "=" xảy ra khi x = y = z = 1

Có thể dùng pp sắp thứ tự dc k bạn


Trong chủ đề: Cho a, b>0. Tìm min $\frac{(a+b)^3}{ab^2...

01-01-2017 - 16:05

tách b thành b/2+b2/2 dùng AM GM rồi lập phương lên là ra nha bạn