Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


SonKHTN1619

Đăng ký: 16-12-2016
Offline Đăng nhập: 16-12-2017 - 18:15
*****

Bài viết của tôi gửi

Trong chủ đề: Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

19-09-2017 - 21:19

P4 D2


Trong chủ đề: VMF's Marathon Hình học Olympic

18-09-2017 - 22:50

Bài 198:

Gọi $AD,CH$ cắt $(O)$ lần thứ hai tại $X,Y$.

Áp dụng định lý $Pascal$ cho bộ $\binom{X A C}{B Y A}$ ta có $X,Y, K$ thẳng hàng.

Tiếp tuyến tại $X$ của $(O)$ song song $BC$

$=>$ Áp dụng định lý $Pascal$ cho $\binom{B Y X}{X A C}$ ta có $KL // BC$ với $L$ là giao $CH$ với $AD$.

Do đó $HK \perp AD.$

Bài toán 200. Cho $\Delta ABC$ nội tiếp $(O)$. Đường tròn $\omega $ tiếp xúc trong $(O)$ và tiếp xúc $AB,AC$ tại $E,F$. $EF$ cắt $BC$ tại $X$. Đường tròn nội tiếp $(I)$ tiếp xúc $BC$ tại $D$. $AD$ cắt $\omega $ tại $T$ sao cho $T$ nằm giữa $A,D$, $AX$ cắt $(O)$ lần thứ hai tại $S$. $(AST)$ cắt $AC,AB$ tại $P,Q$. Chứng minh rằng $BCPQ$ là tứ giác lưỡng tâm.  


Trong chủ đề: Đề thi HSGS TST ngày 1 vòng 1.

06-08-2017 - 21:45

Hướng giải của em cho bài 3b:

- Theo gợi ý 1 của thầy Hùng, ta sẽ chứng minh đối xứng của điểm $H$ qua đường thẳng qua $F$ vuông góc $DE$ nằm trên $TI$ (1)

- Chứng minh $\angle CTI = 90^{\circ}$

- Gọi $K$ là hình chiếu của $F$ lên $DE$. Ta sẽ chứng minh $T,I,K$ thẳng hàng từ đó theo gợi ý 2, ta suy ra (1).

Gợi ý 2 có thể chứng minh bằng cách dùng bổ đề sau:

"Cho $\Delta ABC$ có trực tâm $H. E, F$ là 2 điểm bất kỳ trên $CA,AB$. Khi đó $H$ nằm trên trục đẳng phương của $(BE), (CF)$


Trong chủ đề: [Vòng 2] Đề thi chọn HSG lớp 11-12 KHTN 2012-2013

06-08-2017 - 21:26

Em xin đào lại topic chút:

Bài 3 ngày 1:

Gọi $Y,J$ là giao của $CF$ với tiếp tuyến tại $D$ của $(ABD)$ và $(ABD)$ 

Gọi $X$ là giao của $BJ$ với $(O)$, $AX$ cắt $BJ$ tại $L$

Áp dụng định lý $Pascal$ cho $\binom{ADB}{EXD} => A,X,G$ thẳng hàng

Áp dụng định lý $Pascal$ cho $\binom{AJB}{BXF} => Y, L,T$ thẳng hàng

Áp dụng định lý $Pascal$ cho $\binom{JDE}{DBF} => D,F,H$ thẳng hàng

$DM$ cắt $(O)$ lần thứ hai tại $I => BI // AF$

Áp dụng định lý $Pascal$ cho $\binom{ABD}{XFE}$ ta thu được $HN // AT (q.e.d)$

 


Trong chủ đề: Đề chọn HSG KHTT 2011-2012 vòng 2

04-08-2017 - 21:31

Em xin phép đào lại topic chút: 

Bài 3 ngày 2:

a/ Gọi $K,L$ là tâm của $(APM), (BPN)$

Ta có $\angle KAM = 90^{\circ} - \angle APD = const => K$ chạy trên đường thẳng cố định

$=>$ Tiếp tuyến tại $A$ của $(APM)$ cố định.

Tương tự ta có tiếp tuyến tại $B$ của $(BPN)$ cố định.

Gọi $T$ là giao 2 tiếp tuyến trên $=>T$ cố định

$=> T$ nằm trên trục đẳng phương của $(APM), (BPN)$ => $PQ$ đi qua $T$ cố định (q.e.d)

b/ Qua $E$ kẻ đường thẳng song song với $CD$ cắt $AC,BD$ tại $X,Y$

Gọi $R$ là giao của $BT$ với $AC$

Theo định lý $Reim$ ta có $ABXY$ là tứ giác nội tiếp.

$=> E(DCXT) = (TXRB) = -1 => E,I,T$ thẳng hàng (q.e.d)