Đến nội dung


SonKHTN1619

Đăng ký: 16-12-2016
Offline Đăng nhập: 06-10-2017 - 22:32
*****

#693669 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Gửi bởi SonKHTN1619 trong 24-09-2017 - 21:14

Ngày 3:

Bài 1: Cho dãy $(a_n),n \geq 0$ thỏa mãn: $a_0 = \frac {1}{3}, a_{n+1} = \frac {a_n^2}{1-2a_n^2}$. Đặt $b_n = \frac {a_0a_1...a_n}{a_{n+1}}$. Chứng minh rằng $(b_n)$ có giới hạn hữu hạn và tìm giới hạn đó.

Bài 2: Tìm $f: R -> R$ thỏa mãn $f((x-y)f(x)-f(y)) + (x+1)f(y-x) + x = 0$

Bài 3: Cho $\Delta ABC$ nội tiếp $(O)$, $M $là điểm bất kỳ nằm trên cạnh $BC$. Đường đối trung góc $M$ của $\Delta MAB, \Delta MAC$ cắt $(MAB),(MAC)$ lần thứ hai lần lượt tại $Q,R$. $P$ là điểm nằm trên đường thẳng $BC$ thỏa mãn $AP \perp AM$. Gọi $\Gamma $ là tiếp tuyến chung gần $A$ hơn của $(MAB), (MAC)$. Chứng minh rằng $\Gamma $ tiếp xúc $(PQR)$.

Bài 4: Cho $a,b,c$ là các số thực dương. Chứng minh rằng:

$\sum{\frac {a^3}{b^2-bc+c^2} }$ + $\frac{9}{2(ab+bc+ca)} \geq \frac{9}{2}$ 

 

 

 

 

 

 

 

Ngày 4:

Bài 5: Tìm tất cả các số nguyên dương n thỏa mãn với mọi k nguyên dương, tồn tại m nguyên dương sao cho n là ước của $m^4+m^3+m^2+k$.

Bài 6: Cho $\Delta ABC$ nội tiếp $(O)$. $M,N$ là 2 điểm trên cung $BC$ không chứa $A$ thỏa mãn $MN//BC$ và tia $AM$ nằm giữa 2 tia $AB,AN$. $P,Q$ là hình chiếu của $M,N$ lên $BC$.$E,F$ trên $CA,AB$ thỏa mãn $QE//AB,PF//AC$. $K,L$ lần lượt nằm trên $AN,AM$ sao cho $EK \perp AC, FL \perp AB$. Chứng minh rằng $OK=OL$.

Bài 7: Cho $n \geq 2$ là số nguyên dương. Ta xét đa giác đều 2n đỉnh. Ta điền các số 0, 1 vào các đỉnh thỏa mãn số số 0 bằng số số 1. Ta gọi tập 2k đỉnh là cân nếu trong 2k đỉnh đó, số số 0 bằng số số 1, k nguyên dương.

a/ Chứng minh rằng với mỗi $1 \leq k \leq n$, luôn luôn tồn tại một tập cân có độ dài 2k.

b/ Chứng minh rằng nếu $k \leq \sqrt {2n+2} - 2$, luôn luôn tồn tại 2 tập cân 2k không có đỉnh chung.




#693381 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Gửi bởi SonKHTN1619 trong 19-09-2017 - 21:19

P4 D2




#693358 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Gửi bởi SonKHTN1619 trong 19-09-2017 - 15:40

Ngày 1:

Bài 1: Cho $(a_n)$ xác định bởi công thức sau: $ a_0=1, a_1=4, a_{n+1}=2a_n+3a_{n-1} $. Chứng minh rằng trong dãy số trên không có số nào là bội của $2017$.

Bài 2: Tìm tất cả các đa thức $P(x)$ hệ số nguyên không âm thoả mãn $P(\sqrt [3]{3})=2017$ và $P(1)$ nhận giá trị nhỏ nhất có thể.

Bài 3: Cho tứ giác $ABCD$ nội tiếp $(O)$. $H,K$ là hình chiếu của $A$ lên $CB,CD$. $M,N,P,Q$ lần lượt là trung điểm $AB,AD,CH,CK$. $S,T$ lần lượt thuộc $AH,AK$ sao cho $PS \perp PM, QT \perp QN$. $AP,AQ$ cắt $(O)$ lần thứ hai tại $E,F$. Chứng minh rằng $SE,TF$ cắt nhau trên $(O)$.

Bài 4: Cho 2017 số 0 nằm trên hàng ngang. Mỗi lần ta lấy 10 số liên tiếp và tăng những số đó lên 1 đơn vị. Hỏi sau một số hữu hạn bước, trên hàng ngang có nhiều nhất bao nhiêu số bằng nhau?

 

 

 

 

 

Ngày 2:

Bài 5:  Cho n là số nguyên dương. Giả sử phương trình $\frac {1}{\sqrt [3]{x}} + \frac {5}{\sqrt [7]{y}} = \frac {1}{n}$ có m cặp nghiệm nguyên dương $(x,y)$ và m-1 là số chính phương. Chứng minh rằng n là số chính phương.

Bài 6: Cho 2 đường tròn $(O),(K)$ cắt nhau tại $A,B$ và $K$ nằm trên $(O)$. Tiếp tuyến tại $A$ của $(O)$ cắt $(K)$ lần thứ hai tại $P$, $PB$ cắt $(O)$ lần thứ hai tại $C$. Một đường thẳng bất kỳ qua $P$ cắt $(O)$ tại $M,N$. Tiếp tuyến tại $M,N$ của $(O)$ cắt $AP$ tại $Q,R$. Chứng minh rằng $R,Q,K,C$ thuộc cùng đường tròn.

Bài 7: Cho a,b,c là các số thực thỏa mãn $(a+b)(b+c)(c+a) ≠ 0$. Chứng minh rằng:

$\frac {(a^2-b^2)(a^2-c^2)}{(b+c)^2} + \frac {(b^2-c^2)(b^2-a^2)}{(c+a)^2} + \frac {(c^2-a^2)(c^2-b^2)}{(a+b)^2} \geq 0$




#693339 VMF's Marathon Hình học Olympic

Gửi bởi SonKHTN1619 trong 18-09-2017 - 22:50

Bài 198: (IMOSL 2006)

Bài 199:

Gọi $AD,CH$ cắt $(O)$ lần thứ hai tại $X,Y$.

Áp dụng định lý $Pascal$ cho bộ $\binom{X A C}{B Y A}$ ta có $X,Y, K$ thẳng hàng.

Tiếp tuyến tại $X$ của $(O)$ song song $BC$

$=>$ Áp dụng định lý $Pascal$ cho $\binom{B Y X}{X A C}$ ta có $KL // BC$ với $L$ là giao $CH$ với $AD$.

Do đó $HK \perp AD$

Bài 201:

Cho $\Delta ABC$ nội tiếp $(O)$. Đường tròn $\omega $ tiếp xúc trong $(O)$ và tiếp xúc $AB,AC$ tại $E,F$. $EF$ cắt $BC$ tại $X$. Đường tròn nội tiếp $(I)$ tiếp xúc $BC$ tại $D$. $AD$ cắt $\omega $ tại $T$ sao cho $T$ nằm giữa $A,D$, $AX$ cắt $(O)$ lần thứ hai tại $S$. $(AST)$ cắt $AC,AB$ tại $P,Q$. Chứng minh rằng $BCPQ$ là tứ giác lưỡng tâm.  




#689771 [Vòng 2] Đề thi chọn HSG lớp 11-12 KHTN 2012-2013

Gửi bởi SonKHTN1619 trong 06-08-2017 - 21:26

Em xin đào lại topic chút:

Bài 3 ngày 1:

Gọi $Y,J$ là giao của $CF$ với tiếp tuyến tại $D$ của $(ABD)$ và $(ABD)$ 

Gọi $X$ là giao của $BJ$ với $(O)$, $AX$ cắt $BJ$ tại $L$

Áp dụng định lý $Pascal$ cho $\binom{ADB}{EXD} => A,X,G$ thẳng hàng

Áp dụng định lý $Pascal$ cho $\binom{AJB}{BXF} => Y, L,T$ thẳng hàng

Áp dụng định lý $Pascal$ cho $\binom{JDE}{DBF} => D,F,H$ thẳng hàng

$DM$ cắt $(O)$ lần thứ hai tại $I => BI // AF$

Áp dụng định lý $Pascal$ cho $\binom{ABD}{XFE}$ ta thu được $HN // AT (q.e.d)$

 

Hình gửi kèm

  • Screenshot from 2017-08-06 21:25:48.png



#681529 Tuần 4 tháng 5/2017: Chứng minh rằng $MY \parallel KR$.

Gửi bởi SonKHTN1619 trong 22-05-2017 - 19:07

Giải bài 2:
$H,O$ là hai điểm liên hợp đẳng giác trong $\Delta ABC$
$=> \angle OPC = \angle OBC = \angle ABH$
$=> \Delta ACP \sim \Delta AHB => AB.AC=AH.AP$
Gọi $S$ là điểm đối xứng của $A$ qua $BC. => S$ nằm trên $(BHC)$
$=> \Delta ABS \sim \Delta AOC => AB.AC=AO.AT$
Xét phép F là hợp phép nghịch đảo cực $A$, phương tích $AB.AC$ và với phép đối xứng qua phân giác $\angle BAC$, ta có
$B \leftrightarrow C$
$O \leftrightarrow S$
$H \leftrightarrow P$
$=> (APH) \leftrightarrow HP, (BOC) \leftrightarrow (BHC), (O) \leftrightarrow BC$
$=> X \leftrightarrow D$ với $D$ là giao của $HP$ và $BC$.
Gọi $E,F$ là giao của $BS$ với $OC$, $BH$ với $CP$.
$\angle AOE = 180^{\circ} - \angle AOC = 180^{\circ} - \angle ABS = \angle ABE => BEAO$ là tứ giác nội tiếp
Tương tự, $AFCH$ là tứ giác nội tiếp.
$=> \angle EAB +\angle FAC= \angle EOB +\angle FHC = 2 \angle OCB + \angle BAC = 180^{\circ} - 2 \angle BAC +\angle BAC$
$=> E,A,F$ thẳng hàng.
$=>$ Áp dụng định lý $Desargues$ cho $ \Delta BHS$ và $ \Delta CPO$ ta thu được $=> SO, HP, BC$ đồng quy tại $D$
Gọi $K$ đối xứng $O$ qua $BC$
Qua phép đỗi xứng trục $BC$, $SD$ đi qua $O => AD$ đi qua $K$ cố định.
Qua phép F, $AX$ đi qua điểm $L$ cố định.


#679687 Đề thi Olympic chuyên KHTN 2017

Gửi bởi SonKHTN1619 trong 06-05-2017 - 13:29

Câu 3: 

a/Gọi $G$ là giao điểm của $EF$ và $BC$, $T,S,R$ là giao điểm của của $AD$ với $(I), EF, PQ$

$A$ là cực của $EF$ => $G$ là cực của $TD$ => $GT$ là tiếp tuyến của $(I)$.

$=> (DTPQ) = D(DTPQ) = D(GSMN) = D(GDCB) = -1$

$=> DPTQ$ là tứ giác điều hòa

$=> PQ$ đi qua $G$

$=> (GRPQ)=(GDBC) = -1 => BP, CQ, DR$ hay $AD$ đồng quy tại điểm J.

b/$(GSNM)=(GRQP)=-1=> AD,NP,MQ$ đồng quy tại $K$.

$DM$ cắt $BN$ tại $L$.

$=> M(BCNL) = M(BCGD) = -1 => B$ là trung điểm $NL$

$=> P(xJKD) = -1 => J$ là trung điểm $KD$.

Theo tính chất đường thẳng Gauss của tứ giác $DPKQ$, ta có $JX$ chia đôi $MN$. 

 




#679613 Chứng minh rằng $(BOY)$ tiếp xúc với $(COZ)$

Gửi bởi SonKHTN1619 trong 05-05-2017 - 20:22

Hint: Xét phép nghịch đảo cực O phương tích OA^2




#670433 Tuần 5 tháng 1/2017: $AR$ và trung trực $MN$ cắt nhau trê...

Gửi bởi SonKHTN1619 trong 30-01-2017 - 09:21

Ta sẽ chứng minh bổ đề sau:
Cho $\Delta ABC $, phân giác $AD,BE,CF$ đồng quy tại $I.$
$X,Y,Z$ thuộc $EF,FD,DE. X,A_1$ trên $EF,BC$ sao cho $I, A_0, X$ thẳng hàng và $IX⊥BC.$
Khi đó, $AA_0, AX$ là hai đường đẳng giác. 
Chứng minh:
Gọi $(O)$ là đường tròn ngoại tiếp $\Delta ABC.$
$AD$ cắt $(O)$ lần thứ hai tại $A_1, A_2$ đối xứng $A_1$ qua $O.$
$EF ∩ BC ≡ S, A_0A_2 ∩ OI ≡ A_3, IX ∩ AA_2 ≡ A_4, IS ∩ AB ≡ A_5$
$A_2(IA,XA_3)=(IA_4,XA_0)=S(A_5A,FB)=I(A_5A,FB)=(SD,BC)=I(A_2A_1,XO)=(A_2A,XA_3)$
$=>A,X,A_3$ thẳng hàng.
$=>A_0, AX$ là hai đường đẳng giác (q.e.d).
Quay trở lại bài toán:  
Đoạn $AD,AR$ cắt (I) lần lượt tại $L,G.$
Áp dụng bổ đề, ta có $L, G$ đối xứng qua $AI.$
$AI ∩ (I) = {J,S} => SE = SF$
$AM // JE, AN // JF$
$=>$ Ta có biến đổi góc sau:
$∠MAN+∠MDN = ∠BAC+∠NAF +∠MAE + ∠EDF = ∠BAC + ∠AEJ + ∠AFJ + ∠EDF = ∠BAC + 2∠EDF = 180°$
$=> AMDN$ là tứ giác nội tiếp đường tròn $\omega .$ 
Từ đó ta có biến đổi tỉ số:
$\frac{FN}{AF}=\frac{sin(∠NAF)}{sin(∠AND)}=\frac{sin(∠MAE)}{sin(∠AMD)}=\frac{EM}{AB} => FN=EM$
Mặt khác, $∠NFS = 180-∠SFD = 180-∠SED = ∠MES$
$=>\Delta MES = \Delta NFS => SM=SN.$ (1)
Gọi $K,T$ lần lượt là giao của $MN, JG$ với $AB$.
Ta có biến đổi góc:
$∠ADE=∠LFE=∠GEF=∠TJF$
$=>∠AKM = ∠ANK+∠KAN = ∠ADE+∠AFJ = ∠AFJ+∠TJF=∠ATJ$
$=> JG // MN => SG ⊥ MN$ (2)
(1),(2) => $GM=GN$ (q.e.d)

Hình gửi kèm

  • Screenshot from 2017-01-30 09:20:44.png



#667762 Tuần 2 tháng 1/2017: Chứng minh đường tròn đi qua 2 điểm cố định

Gửi bởi SonKHTN1619 trong 09-01-2017 - 18:48

bài này giống với cấu hình bài vmo 2017 đợt 2 ,

cách của em giống với cách anh ecchi 123, nhưng có điều này em thắc mắc,giả sử tiếp tuyến của B,C cắt nhau tại X,tiếp tuyến của S,T cắt nhau tại Y thì X,Y cố định và X,Y ,E,F thẳng hàng

HX,HY cắt (PQR) tại X',Y' cũng cố định?

X,Y,E,F không thẳng hàng đâu.




#667761 Tuần 2 tháng 1/2017: Chứng minh đường tròn đi qua 2 điểm cố định

Gửi bởi SonKHTN1619 trong 09-01-2017 - 18:46

Bài toán này là mở rộng của bài 7b VMO năm nay.
$ J≡BS∩CT,X≡AJ∩EF $
$=>(ST,AX)=(BC,AX), X,J$ cố định.
Áp dụng định lý Pascal cho $(\begin{array}{} A & S & T \\ P & C & B  \end{array})$, ta co $E,F,J$ thẳng hàng.
$D≡PX∩BC, G≡AP∩BC, \left\lbrace A,L \right\rbrace=AD∩(O)$
$P(AD,EF)=(AX,ST)=(AX,BC)=P(GD,BC)=A(GD,BC)=A(PD,EF)$
$=>D,E,F$ thẳng hàng.
$=>\overline{DP}.\overline{DX}=\overline{DB}.\overline{DC}=\overline{DQ}.\overline{DR}$
$=> (PQR)$ đi qua $X$ cố định.
$\left\lbrace X,Y \right\rbrace=(PQR)∩AJ$
$\overline{JY}=\frac{\overline{JP}.\overline{JQ}}{\overline{JX}}=\frac{\mathscr{P}_ J/(K)}{\overline{JX}}=  const$
$=>Y$ cố định (q.e.d)



#667253 Đề Thi VMO năm 2017

Gửi bởi SonKHTN1619 trong 06-01-2017 - 11:29

VMO ngày 2

Hình gửi kèm

  • 15822721_1604055969609602_1427530542529003057_n.jpg



#667212 Đề Thi VMO năm 2017

Gửi bởi SonKHTN1619 trong 05-01-2017 - 23:57

Câu a hoàn toàn có thể viết lại bằng một đường tròn đi qua B,C như sau:

Gọi $\omega $ là đường tròn đi qua $B,C$ cắt $CA,AB$ tại $E, F$, tâm $K$. Gọi $L$ là tâm của $(AEF)$, $H$ là giao của $BE, CF$. Gọi $G$ là giao điểm của $KL$ với $AH$, $D$ là giao điểm thứ hai của $AH$ với $(O)$. $DB, DC$ cắt $EG,FG$ lần lượt tại $M,N$. CMR $OL \perp  MN$. 

Câu b em chưa biết nên mở rộng thế nào vì lúc này tuy tính chất chia đôi của $BP,CQ$ vẫn bảo toàn nhưng do $H$ không nằm trên $(AEF)$ nữa nên mất đi tính chia đôi của $RS$.




#667204 Đề Thi VMO năm 2017

Gửi bởi SonKHTN1619 trong 05-01-2017 - 22:42

Một mở rộng cho câu 3a, tuy nhiên ý tưởng là khá lộ liễu.
Cho $\Delta ABC$ nội tiếp $(O)$, $BE,CF$ là các đường cao, $H$ trực tâm. $AH$ cắt (O) tại điểm thứ hai $D$, $I$ trung điểm $AH$. $DB,DC$ cắt $EI,FI$ tại $M,N$. Gọi $S,T$ lần lượt là giao điểm thứ hai của $NH$ với $(BNE)$,$MH$ với $(CMF)$. CMR $(AH)$, đường tròn đối xứng $(O)$ qua $BC$, $(HST)$ đồng trục.




#667191 Đề Thi VMO năm 2017

Gửi bởi SonKHTN1619 trong 05-01-2017 - 22:00

Giả sử tồn tại $P(x)$ thỏa mãn.

Do $x^3-2$ và $x^2-5$ lần lượt là các đa thức tối thiểu của $\sqrt[3]{2}$ và $\sqrt{5}$ nên ta có:

$x^3-2|P(x+1)-(x+1)$; (1)

$x^2-5|P(x+1)-(3x+2)$. (2)

Từ (1), tồn tại $Q(x)$ là đa thức hệ số nguyên sao cho $P(x+1)=(x+1)+(x^3-2)Q(x)$

Do đó,

(2)$\Leftrightarrow (5x-2)Q(x) \equiv 2x+1 (mod x^2-5)$

$\Leftrightarrow (5x-2)(5x+2)Q(x) \equiv (2x+1)(5x+2) (mod x^2-5)$

$\Leftrightarrow 121Q(x) \equiv 9x+52 (mod x^2-5)$

Với $x=-4, 0 \equiv 16 (mod 11)$, vô lý.

Do đó không tồn tại $P(x)$ thỏa mãn.