Đến nội dung


SonKHTN1619

Đăng ký: 16-12-2016
Offline Đăng nhập: 06-10-2017 - 22:32
*****

Chủ đề của tôi gửi

Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

24-09-2017 - 21:14

Ngày 3:

Bài 1: Cho dãy $(a_n),n \geq 0$ thỏa mãn: $a_0 = \frac {1}{3}, a_{n+1} = \frac {a_n^2}{1-2a_n^2}$. Đặt $b_n = \frac {a_0a_1...a_n}{a_{n+1}}$. Chứng minh rằng $(b_n)$ có giới hạn hữu hạn và tìm giới hạn đó.

Bài 2: Tìm $f: R -> R$ thỏa mãn $f((x-y)f(x)-f(y)) + (x+1)f(y-x) + x = 0$

Bài 3: Cho $\Delta ABC$ nội tiếp $(O)$, $M $là điểm bất kỳ nằm trên cạnh $BC$. Đường đối trung góc $M$ của $\Delta MAB, \Delta MAC$ cắt $(MAB),(MAC)$ lần thứ hai lần lượt tại $Q,R$. $P$ là điểm nằm trên đường thẳng $BC$ thỏa mãn $AP \perp AM$. Gọi $\Gamma $ là tiếp tuyến chung gần $A$ hơn của $(MAB), (MAC)$. Chứng minh rằng $\Gamma $ tiếp xúc $(PQR)$.

Bài 4: Cho $a,b,c$ là các số thực dương. Chứng minh rằng:

$\sum{\frac {a^3}{b^2-bc+c^2} }$ + $\frac{9}{2(ab+bc+ca)} \geq \frac{9}{2}$ 

 

 

 

 

 

 

 

Ngày 4:

Bài 5: Tìm tất cả các số nguyên dương n thỏa mãn với mọi k nguyên dương, tồn tại m nguyên dương sao cho n là ước của $m^4+m^3+m^2+k$.

Bài 6: Cho $\Delta ABC$ nội tiếp $(O)$. $M,N$ là 2 điểm trên cung $BC$ không chứa $A$ thỏa mãn $MN//BC$ và tia $AM$ nằm giữa 2 tia $AB,AN$. $P,Q$ là hình chiếu của $M,N$ lên $BC$.$E,F$ trên $CA,AB$ thỏa mãn $QE//AB,PF//AC$. $K,L$ lần lượt nằm trên $AN,AM$ sao cho $EK \perp AC, FL \perp AB$. Chứng minh rằng $OK=OL$.

Bài 7: Cho $n \geq 2$ là số nguyên dương. Ta xét đa giác đều 2n đỉnh. Ta điền các số 0, 1 vào các đỉnh thỏa mãn số số 0 bằng số số 1. Ta gọi tập 2k đỉnh là cân nếu trong 2k đỉnh đó, số số 0 bằng số số 1, k nguyên dương.

a/ Chứng minh rằng với mỗi $1 \leq k \leq n$, luôn luôn tồn tại một tập cân có độ dài 2k.

b/ Chứng minh rằng nếu $k \leq \sqrt {2n+2} - 2$, luôn luôn tồn tại 2 tập cân 2k không có đỉnh chung.


Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

19-09-2017 - 15:40

Ngày 1:

Bài 1: Cho $(a_n)$ xác định bởi công thức sau: $ a_0=1, a_1=4, a_{n+1}=2a_n+3a_{n-1} $. Chứng minh rằng trong dãy số trên không có số nào là bội của $2017$.

Bài 2: Tìm tất cả các đa thức $P(x)$ hệ số nguyên không âm thoả mãn $P(\sqrt [3]{3})=2017$ và $P(1)$ nhận giá trị nhỏ nhất có thể.

Bài 3: Cho tứ giác $ABCD$ nội tiếp $(O)$. $H,K$ là hình chiếu của $A$ lên $CB,CD$. $M,N,P,Q$ lần lượt là trung điểm $AB,AD,CH,CK$. $S,T$ lần lượt thuộc $AH,AK$ sao cho $PS \perp PM, QT \perp QN$. $AP,AQ$ cắt $(O)$ lần thứ hai tại $E,F$. Chứng minh rằng $SE,TF$ cắt nhau trên $(O)$.

Bài 4: Cho 2017 số 0 nằm trên hàng ngang. Mỗi lần ta lấy 10 số liên tiếp và tăng những số đó lên 1 đơn vị. Hỏi sau một số hữu hạn bước, trên hàng ngang có nhiều nhất bao nhiêu số bằng nhau?

 

 

 

 

 

Ngày 2:

Bài 5:  Cho n là số nguyên dương. Giả sử phương trình $\frac {1}{\sqrt [3]{x}} + \frac {5}{\sqrt [7]{y}} = \frac {1}{n}$ có m cặp nghiệm nguyên dương $(x,y)$ và m-1 là số chính phương. Chứng minh rằng n là số chính phương.

Bài 6: Cho 2 đường tròn $(O),(K)$ cắt nhau tại $A,B$ và $K$ nằm trên $(O)$. Tiếp tuyến tại $A$ của $(O)$ cắt $(K)$ lần thứ hai tại $P$, $PB$ cắt $(O)$ lần thứ hai tại $C$. Một đường thẳng bất kỳ qua $P$ cắt $(O)$ tại $M,N$. Tiếp tuyến tại $M,N$ của $(O)$ cắt $AP$ tại $Q,R$. Chứng minh rằng $R,Q,K,C$ thuộc cùng đường tròn.

Bài 7: Cho a,b,c là các số thực thỏa mãn $(a+b)(b+c)(c+a) ≠ 0$. Chứng minh rằng:

$\frac {(a^2-b^2)(a^2-c^2)}{(b+c)^2} + \frac {(b^2-c^2)(b^2-a^2)}{(c+a)^2} + \frac {(c^2-a^2)(c^2-b^2)}{(a+b)^2} \geq 0$