Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


manhtuan00

Đăng ký: 19-12-2016
Offline Đăng nhập: Hôm qua, 20:22
***--

Bài viết của tôi gửi

Trong chủ đề: Tuần 3 tháng 4/2017: Chứng minh rằng đường thẳng $QR$ đi qua đi...

21-04-2017 - 20:18

Lời giải bài 1 : Ta sẽ chứng minh $QR$ đi qua $O$. Ta sẽ chứng minh $AL,OQ,BC$ đồng quy

Gọi $X,Y,Z$ tam giác Pedal của $Q$ lên $\triangle ABC$.G ọi $N$ là giao điểm của $QX$ với $(XYZ)$, ta có : $\angle NQZ = \angle ZBX = \angle DPF$

Mặt khác ta có $\angle DFP = \angle DBP = \angle CQP = 180^{\circ} - \angle AQC = \angle QAY + \angle QCY = \angle QZY + \angle QXY = \angle QZY + \angle NZY = \angle NZQ$

Từ hai điều trên ta có $\triangle NZQ \sim \triangle DFP$. Vậy phép vị tự tâm $A$ biến $Y$ thành $E$, biến $Z$ thành $F$, biến $Q$ thành $P$ sẽ biến $N$ thành $D$, biến $X$ thành $K$.

$DP$ cắt $OQ$ tại $G$, $I,J$ là trung điểm cung nhỏ, cung lớn $\overarc {BC}$, $J$ là hình chiếu của $K$ lên $EF$, $KD$ cắt $EF$ tại $R$.

Gọi $B',C'$ là các điểm nằm trên phân giác ngoài sao cho $XB' \perp CQ$ và $BC' \perp BQ$ và $M$ là trung điểm $YZ$
Khi đó $V$ là trung điểm $B'C'$ . Lại có $\angle QB'A = \angle QCA = \angle NZY$. Vậy $\triangle NYZ \cap M \sim \triangle QC'B' \cap V \implies QV \parallel NM$
Gọi $A'$ là chân đường phân giác trong . Ta có $A'B.A'C = A'I.A'A = A'P.A'Q =\implies \frac{A'I}{IP} = \frac{A'P}{PA}$.Lại có $\triangle VIB \sim \triangle AQZ$ nên $\frac{QM}{QA} = \frac{IB^2}{IV^2}$
Mà $\triangle QA'X \sim \triangle IVA \implies \frac{QA'}{QX}= \frac{IV}{IA}$ nên từ đây ta có $\frac{QM}{QA} .\frac{QA'}{QX} = \frac{IB^2}{IV.IA} = \frac{IA'.IA}{IV.IA} = \frac{IA'}{IV} \implies \frac{QM}{QX} = \frac{A'T}{A'Q}.\frac{QA}{IV} = \frac{IP}{IV}$. Suy ra $\triangle MQX \sim \triangle PIV$ nên $VP \parallel MX$
Gọi $H,T$ là giao điểm của $PD$ với phân giác ngoài và $VQ$. Khi đó $\frac{KD}{KR} = \frac{XN}{XT} = \frac{PT}{PH} = \frac{AI}{AP}.\frac{QP}{QI}$

Ta có $\frac{PG}{PA} = \frac{OI}{PA}.\frac{QP}{QI} = \frac{IV}{2IA}.\frac{IA}{PA}.\frac{QP}{QI} =  \frac{1}{2}\frac{KR}{KJ}.\frac{KD}{KR}= \frac{KD}{KL}$. Suy ra $AG \parallel LD$

Đường thẳng qua $D$ song song $AP$ cắt $AL$ tại $W$. Ta chứng minh $GW \parallel UQ$. 

Lấy điểm $V$ trên tia đối của $AP$ thỏa mãn $\frac{AV}{AP} = \frac{AW}{AL}$. Khi đó $VW \parallel LP$. Ta cần chứng minh $V,W,G$ thẳng hàng. Điều này tương đương với $\frac{PV}{PG} = \frac{KL}{PL}$, hay $\frac{PA}{PG} . \frac{KD}{KP} = \frac{KL}{KD}.\frac{KD}{KP}$, hay $\frac{PA}{PG} = \frac{KL}{KD}$. Điều này đúng do $\triangle AGP$ và $\triangle LDK$ có các cạnh tương đối song song. Vậy $GW \parallel PL \parallel UQ$

Xét $\triangle WGD$ và $\triangle UQX$ có các cạnh tương đối song song nên $WU,QG,XD$ đồng quy, tức là $AL,OQ,BC$ đồng quy. Ta hoàn tất chứng minh

 

 

File gửi kèm  123.png   164.08K   0 Số lần tải


Trong chủ đề: $\textbf{Đề thi MYTS vòng 2 Lớp 9}$

11-04-2017 - 19:14

câu 4 chia thành 7 hình tháp 3 ô, mỗi hình tháp tổng chẵn nên có 1 số chẵn suy ra đs là 7


Trong chủ đề: Tuần 2 tháng 4/2017: Chứng minh rằng $\frac{MP}{...

11-04-2017 - 18:40

Lời giải bài 2 : Gọi $S$ là giao điểm của $DX$ với $(O)$. $AQ$ cắt $(O)$ tại $L$. Khi đó $LS$ là đường kính của $(O)$

Gọi $X'$ là đối xứng của $X$ qua $O$ khi đó $LX \perp BC$. Gọi $M$ là hình chiếu của $Q$ lên $BC$. $X'M$ cắt $BC$ tại $I$

$\blacksquare$ Ta chứng minh $U,V,M,D$ đồng viên

Ta sẽ chứng minh $XI,BC,EF$ đồng quy. Gọi $EF$ cắt $BC$ tại $G_1$ thì $\frac{G_1B}{G_1C} = \frac{FB}{FA}.\frac{EA}{EC}$

Gọi $XI$ cắt $BC$ tại $G_2$ thì $\frac{G_2B}{G_2C} =  \frac{IB}{IC}.\frac{XB}{XC}$

Vậy điều cần chứng minh tương đương với 

$\frac{FB}{FA}.\frac{EA}{EC} = \frac{IB}{IC}.\frac{XB}{XC}$

Thật vậy ta có : $\frac{MB}{MC} = \frac{IB}{IC}.\frac{X'B}{X'C} = \frac{IB}{IC}.\frac{AF}{AE} = \frac{IB}{IC}.\frac{AF}{AE}$ nên $\frac{IB}{IC} = \frac{MB}{MC}.\frac{AE}{AF}$ ( do có $\triangle X'BC \sim \triangle AFE$)

Vậy ta cần chứng minh $\frac{AE}{AF}.\frac{BF}{CE}= \frac{MB}{MC}.\frac{AE}{AF}.\frac{XB}{XC}$ tức là $\frac{MB}{MC} = \frac{FB}{EC}.\frac{XB}{XC}  $

Có $\triangle FPE \sim \triangle BXC$ nên $ \frac{FB}{EC}.\frac{XB}{XC}  =  \frac{FB}{EC}.\frac{PF}{PE} = \frac{cotan \angle FBP}{cotan \angle ECP} = \frac{cotan \angle  QBM}{cotan \angle QCM} = \frac{MB}{MC}$. Ta có điều cần chứng minh

Vậy $XI,BC,EF$ đồng quy tại $G$

$\blacksquare$ Ta chứng minh đối xứng của $Q$ qua $K$ nằm trên $(O)$

Thật vậy, ta sẽ chứng minh $S$ chính là đối xứng của $Q$ qua $K$

Gọi $K'$ là trung điểm $QS$. Do $S$ là đối xứng của $L$ qua $O$ nên $AS \perp AQ$ , từ đây suy ra $AS \parallel UV$

$K'$ là trung điểm $QS$ nên $K'$ nằm trên trung trực $AS$, cũng là trung trực $UV$

Lại có $QMDS$ là hình thang vuông nên $K'$ cũng nằm trên trung trực $MD$. Mà tứ giác $MDVU$ nội tiếp nên $K'$ chính là tâm ngoại tiếp $MDVU$ nên $K \equiv K'$

Vậy $K$ chính là trung điểm $QS$.


Trong chủ đề: Tuần 2 tháng 4/2017: Chứng minh rằng $\frac{MP}{...

11-04-2017 - 17:01

Lời giải bài 1 : 

Gọi $X$ là giao điểm của $CK$ với $(O)$ , $OK$ cắt $AX$ tại $S$. Khi đó $\angle XKS  = \angle OCA = 90^{\circ} - \angle AXK$ nên $OS \perp XK$

Tức là $KA = KX$ nên $X \in (K,KA)$. 

Ta có : $\angle PQC = 180^{\circ} - \angle QND - \angle QDN = 180^{\circ} - \angle ANM - \angle AXC = (90^{\circ} - \angle XNM) +90^{\circ} - \angle ANX - \angle ABC = (90^{\circ} -\angle XCB) +90^{\circ} - \angle OCA - \angle ABC = 90^{\circ} - \angle XCB$ nên $CX$ đi qua $J$, tức là $L,J,K,X$ thẳng hàng

$(K)$ cắt $XC$ tại $G$. Khi đó $\angle MGJ = \angle MAX = \angle BCG$ nên $GM \parallel BC$. Tương tự ta có $GN \parallel DC$ nên $\frac{JM}{JP} = \frac{JG}{JC}=\frac{JN}{JQ}$ nên $\frac{MP}{NQ}=\frac{JM}{JN}$


Trong chủ đề: Đề thi $Olympic$ $30/4$ lớp $11$ năm $...

09-04-2017 - 17:17

Bài 5 :  Áp dụng bổ đề quen thuộc sau : $S(n(10^k-1)) = 9k$ với mọi $n <10^k-1$

Thật vậy, ta có nếu $ 3|n$ thì $S(xn) \equiv xn \equiv 0 $ (mod $3$) nên $S(xn)$ không thể nhận mọi số dư modulo $n$

Nếu $(n,3) = 1$ ; Ta chọn $x = 10^t -1$ với $t > log_{10}(n+1)$ và $9t \equiv k$ (mod $n$). Khi đó $S(n(10^t-1)) = 9t \equiv k $ (mod $n$)

Vậy đáp số là tất cả những số không chia hết cho $3$