Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


manhtuan00

Đăng ký: 19-12-2016
Offline Đăng nhập: 19-03-2017 - 19:03
***--

Bài viết của tôi gửi

Trong chủ đề: Tuần 1 tháng 3/2017: Chứng minh $U,V,W$ thẳng hàng trên đường t...

09-03-2017 - 21:22

Lời giải của em ạ

Gọi $H_a,H_b,H_c$ là 3 chân đường cao thì $YZ$ là trung trưc $AH_a$

Khi đó ta có  $X,Y,Z$ chính là tâm ngoại tiếp các tam giác $\triangle AH_aD,\triangle BH_bE,\triangle CH_cF$
Xét phép biến hình $R_{\triangle} \circ I^A_{AB.AC}$, $D$ biến thành $H$, $K_a$ biến thành $M$ là trung điểm $BC$ và $H_a$ biến thành $A'$ đối xứng $A$ qua $O$. Ta có $M,H,A'$ thẳng hàng nên $A,H_a,K_a,D$ đồng viên
Tương tự có $B,H_b,K_b,E$ đồng viên và $C,H_c,K_c,F$ đồng viên
Có $\overline {HA}.\overline{HH_a}= \overline {HB}.\overline{HH_b}= \overline {HC}.\overline{HH_c}$ nên $H$ nằm trên trục đẳng phương của 3 đường tròn 
$(U),(V),(W)$
Lại có $\overline {LA}.\overline{LK_a}=\overline {LB}.\overline{LK_b}=\overline {LC}.\overline{LK_c}$ nên $L$ cũng nằm trên trục đẳng phương của 3 đường tròn
Vậy $HL$ nằm trên trục đẳng phương của 3 đường tròn này nên $HL \perp \overline{U,V,W}$

Trong chủ đề: $f(x-1-f(y))=3f(x)+2x+f(y), \forall x, y\in \mathbb{R...

27-02-2017 - 11:10

$f(x-1-f(y)) = 3f(x)+2x+f(y)$

$P(f(y),y) : f(-1) = 3f(f(y))+3f(y) \implies f(f(y)) = \frac{f(-1)}{3}-f(y)$

$P(2f(y)+1,y): f(f(y)) = 3f(2f(y)+1)+2(2f(y)+1)+f(y)$

$\implies f(2f(y)+1) = -2f(y) +\frac{f(-1)-6}{9}$

$P(3f(y)+2,y): f(2f(y)+1)=3f(3f(y)+2)+2(3f(y)+2)+f(y) \implies f(3f(y)+2) =-3f(y)+\frac{f(1)-42}{27}$

$P(3f(x)+2,y) : f(3f(x)+1-f(y)) = 3f(3f(x)+2)+2(3f(x)+2)+f(y) = f(y)-3f(x)+d$ trong đó $d$ là một hằng số

Thật vậy, Do $f(x-1-f(y)) - 3f(x) = 2x+f(y)$ nhận mọi giá trị trên $\mathbb R$ nên ta có thể thay $3f(x)+1-f(y)$ bởi $x$ nên 

$f(x) = a-x$ trong đó $a$ là một hằng số

Thay vào ta có $a = \frac{1}{2}$ nên $f(x) = -x +\frac{1}{2}$


Trong chủ đề: VMF's Marathon Hình học Olympic

26-02-2017 - 11:51

Bài toán 177 :  Cho tứ giác nội tiếp $ABCD$, $AB$ cắt $CD$ tại $P$, $AD$ cắt $BC$ tại $Q$. Chứng minh rằng khoảng cách giữa trực tâm hai tam giác $APD$ và $AQB$ bằng khoảng cách giữa trực tâm hai tam giác $CQD$ và $BPC$


Trong chủ đề: VMF's Marathon Hình học Olympic

26-02-2017 - 11:44

Lời giải bài 176 : Gọi $M$ là chân đường phân giác ngoài góc $\angle A$, , $N$ là trung điểm $MD$, $NS$ là tiếp tuyến tới đường tròn $(T)$, $SD$ cắt trung trực $BC$ tại $X$, $R$ là trung điểm $BC$, $Z$ là trung điểm $SD$, $D'$ đối xứng $D$ qua $T$ suy ra $M,S,D'$ thẳng hàng.Gọi $L,L'$ là điểm chính giữa cung nhỏ , cung lớn $BC$. $K'$ đối xứng $L$ qua $K$ 

Ta có : $\frac{RX}{RD} = \frac{NZ}{ZD} = \frac{MD}{DD'}$ $= \frac{MD}{\frac{AD}{AL}.KL} = \frac{MD.AL}{AD.KL}= \frac{2R.AL}{AL'.K'L}$ $= \frac{2R}{K'L}.\frac{AL}{AL'} \implies RX =RD. \frac{2R}{K'L}.\frac{AL}{AL'} = RL .\frac{2R}{K'L}$ không đổi nên $X$ cố định

Thật vậy , ta có $DS.DX = DR.DM = DB.DC$ nên tứ giác $SBXC$ nội tiếp

Lại có $NS^2 = ND^2 = NM^2 = NB.NC$ nên $NS$ cũng là tiếp tuyến tới đường tròn $(SBXC)$. Mà điểm $X$ cố định nên đường tròn $(SBXC)$ cố định nên $(T)$ tiếp xúc với đường tròn cố định là $(BXC)$

 


Trong chủ đề: VMF's Marathon Hình học Olympic

25-02-2017 - 10:55

Bài toán 173. Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$, $E$ là giao điểm của $AB$ với $CD$, $F$ là giao điểm của $AD$ với $BC$ . $(AEF)$ cắt $(O)$ tại $P$, $(CEF)$ cắt $O$ tại $Q$. $AC$ cắt $BD$ tại $I$. Chứng minh rằng $P,I,Q$ thẳng hàng.