Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


manhtuan00

Đăng ký: 19-12-2016
Offline Đăng nhập: Hôm nay, 17:25
***--

#672711 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong Hôm nay, 10:55

Mình xin phép đề xuất bài mới tại đang định up thì mạng sập 

Bài toán 173 : (sách) Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$, $E$ là giao điểm của $AB$ với $CD$, $F$ là giao điểm của $AD$ với $BC$ . $(AEF)$ cắt $(O)$ tại $P$, $(CEF)$ cắt $O$ tại $Q$. $AC$ cắt $BD$ tại $I$. Chứng minh rằng $P,I,Q$ thẳng hàng




#672452 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong 23-02-2017 - 00:17

Lời giải bài 172 : 

Trước tiên ta chứng min bổ đề sau : 

Bổ đề : Cho $\triangle ABC$. Đường tròn $(X)$ bất kì qua $A$ tiếp xúc với đường tròn Euler cắt $AB,AC$ tại $M,N$. Chứng minh rằng đường tròn $(XMN)$ tiếp xúc với đường trung bình của $\triangle ABC$

 

Chứng minh : Xét phép nghịch đảo $I^A_k$, bài toán trên trở thành : Cho $\triangle ABC$ nội tiếp $(O)$. Đường thẳng bất kì tiếp xúc $(BOC)$ cắt $CA,AB$ tại $M,N$. $D$ đối xứng $A$ qua $MN$. Khi đí $(DMN)$ tiếp xúc $(O)$ ( đây chính là bài toán SMO 2016 ở đây https://www.artofpro...1220645p6102531 )

 

Áp dụng : Gọi $T$ là trung điểm $MH$

Theo định lý Menelaus ta có : $1 = \frac{\overline{DQ}}{\overline{DP}}.\frac{\overline{NP}}{\overline{NA}}.\frac{\overline{HA}}{\overline{HQ}}= \frac{\overline{DQ}}{\overline{DP}}.\frac{\overline{MP}}{\overline{MC}}.2=\frac{\overline{DQ}}{\overline{DP}}\frac{\overline{MP}}{\overline{MH}} \implies \frac{\overline{DQ}}{\overline{DP}}=\frac{\overline{MH}}{\overline{MP}}$ nên $MD \perp BC$

Ta có đường trung bình của $\triangle DAH$ tiếp xúc $(XMN)$ theo bổ đề, mà đường trung bình này chính là đường thẳng qua $T$ vuông góc $BC$ nên $(XMN)$ tiếp xúc đường thẳng cố định là đường qua trung điểm $MH$ vuông góc $BC$

Hình gửi kèm

  • Bài 4.png



#670608 Tuần 1 tháng 2/2017: $QR$ đi qua điểm cố định khi $P$ di...

Gửi bởi manhtuan00 trong 07-02-2017 - 01:30

Lời giải của em ạ 

Gọi $N$ đối xứng $P$ qua $O$ thì $N,E,B$ thẳng hàng và $N,F,C$ thẳng hàng. $BR,CR$ cắt $NC,NB$ tại $U,V$

$\blacksquare$ Ta chứng minh $AN,UV,BC$ đồng quy

$\angle PCR = \angle PBR$ nên $\angle VCN = \angle UBN \implies U,V,B,C$ đồng viên

$UV$ cắt $BC$ tại $T$ . Gọi $I$ là tâm $(UVBC)$. Theo định lý Brocard, $TR \perp NI$ tại $X$, $AR \perp TI$ tại $Y$

Xét nghịch đảo $ I^N_{NV.NB} : B \rightarrow V, C \rightarrow U,R \rightarrow Y, I \rightarrow X, P \rightarrow W ( W \equiv AO \cap UV)$

Thật vậy ta có $N,W,X,Y$ đồng viên trên đường tròn đường kính $NT$ nên $R,I,P$ thẳng hàng. Từ đây có $NA \perp RI$. Theo Brocard thì $NT \perp RI$ nên $N,T,A$ thẳng hàng.

$\blacksquare$ Ta chứng minh $QR$ đi qua điểm cố định 

Có $N(RT,BC) = F(ET,BC) = -1$ nên $N,Q,R$ thẳng hàng. $RQ$ cắt $(O)$ tại $L$ thì $(AL,BC) = N(AL,BC) = (TQ,BC) = -1 \implies L$ cố định. Vậy $QR$ đi qua $L$ cố định với $L$ thỏa mãn tứ giác $ABLC$ điều hòa




#670524 $f(x^{2} + f(y)) = \frac{f^{2}(x)}{2} + 4y$

Gửi bởi manhtuan00 trong 31-01-2017 - 00:21

$f(x^2+f(y)) = \frac{f^2(x)}{2}+4y$

$P(0,y):f(f(y)) = \frac{f^2(0)}{2}+4y \implies f$ song ánh

$P(-x,y) \implies f^2(x) = f^2(-x) \implies f(-x) = -f(x) \implies f(0) = 0$

$P(0,y) : f(x^2) = \frac{f^2(x)}{2}$

$P(x,0) : f(f(y)) = 4y$

$\implies f(x^2+f(y))= f(x^2)+f(f(y))$

Do $f$ song ánh nên có thể thay $f(y)$ bởi $y$ nên

$f(x^2+y) = f(x^2)+f(y)$

Do $f(x^2) = \frac{f^2(x)}{2} >0$ nên $f(x^2+y) > f(y)$. Vậy $f$ tăng ngặt

Lại có $f$ cộng tính nên $f(x) = ax \implies f(x) = 2x$

 




#670522 Tuần 5 tháng 1/2017: $AR$ và trung trực $MN$ cắt nhau trê...

Gửi bởi manhtuan00 trong 30-01-2017 - 23:51

Lời giải của em ạ

Gọi $S$ là chân đường phân giác ngoài góc $\angle A$ của $\triangle ABC$. khi đó $S,P,Q$ thẳng hàng

$AR$ cắt $(I)$ tại $T$ . Ta cần chứng minh $T$ nằm trên trung trực $MN$

$AI$ cắt $(I)$ tại $G$. Ta có $\angle NAG = \angle FJG$ nên $A,N,G,D$ đồng viên, tương tự ta có $A,M,D,G$ đồng viên nên $A,M,N,D,G$ đồng viên trên $(O')$

Ta có $\angle NAG = \angle FJG = \angle EJG = \angle MAG$ nên $G$ là điểm chính giữa cung của đường tròn $(O')$

Do $JG$ là đường kính của $(I)$ nên $TJ \perp TG$ . Ta sẽ chứng minh $JT \parallel MN$ từ đó suy ra $TG \perp MN$ thì $TG$ là trung trực $MN$

Gọi $U$ là trung điểm $EF$, $V$ là giao điểm của $AS$ và $ID$

Có $A(IV,RD) = (IV,RD) = -1$ nên $AI$ là phân giác $\angle DAR$.

Gọi $H$ là giao của $DU$ với $(I)$. Khi đó ta có $\triangle FTA = \triangle EHA \sim \triangle DEA$ nên $AT,AD$ đẳng giác trong $\angle EAF$. Khi đó ta có $H \equiv T$. Vậy $T,U,D$ thẳng hàng

Ta có $IU.IA = ID^2$ nên $\angle IAT = \angle IAD = \angle UDI$ nên $A,T,I,D$ đồng viên, tức là $A,T,I,D,S$ đồng viên $\implies \angle STI = 90^{\circ} \implies ST$ là tiếp tuyến của $(I)$

Ta có $(NM,DG) = (NM,NG)+(NG,DG) = (DM,DG)+(AN,AD) = (JE,JG)+(AN,AG)+(AG,AD) = (JE,JG)+(JF,JG)+(AG,AD)= (AG,AD)$

Lại có $(JT,DG) = (JT,TS) + (TS,DS)+ (DS,DT)+(DT,DG) = (GJ,GT)+(AT,AD)+(DS,DT)+(TJ,GJ) = (AT,AD)+(DS,DT)-(TJ,TG)= (DS,DT)-(TJ,TG)+2(AG,AD) = (DS,DT)-(TJ,TG)+(DT,DI)+(AG,AD)=(DS,DI) - (TJ,TG)+(AG,AD) = (AG,AD)$

$\implies (NM,DG) = (JT,DG) \implies JT \parallel MN$. Ta có điều cần chứng minh

Hình gửi kèm

  • Untitled.png



#669464 Tuần 4 tháng 1 năm 2017 : $JL\perp ON$

Gửi bởi manhtuan00 trong 22-01-2017 - 22:05

Gọi $W,R$ lần lượt là chân đường phân giác trong, chân đường phân giác ngoài góc $\angle A$. $T$ là chân tiếp tuyến tại $A$ nên $T$ là trung điểm $RW$.

Ta sẽ chứng minh $A,I,D,L$ đồng viên

Thật vậy, Gọi $S,Z$ là trung điểm cung lớn, cung nhỏ $BC$. 

Gọi $U$ là giao điểm của $(AEIF)$ với $(O)$. $X$ là giao của $EF$ với $BC$

Theo 1 tính chất quen thuộc thì $UD$ là phân giác $\angle BUC$ nên $U,D,Z$ thẳng hàng

$(XD,BC) = -1$ nên $UX$ là phân giác ngoài $\angle BUC$ nên $UX$ đi qua $S \implies D$ là trực tâm $\triangle SXZ$ nên $XZ \perp DS$

Từ đây ta có $D,L,S$ thẳng hàng nên $\angle LAI = \angle LSZ = \angle IDS$ nên $A,I,D,L$ đồng viên

Gọi $P'$ là tâm $ADIL$. Do $A,D,I,R$ đồng viên nên $A,D,I,R,L$ đồng viên nên $P'$ là trung điểm $IR$ 

$\implies TP' \parallel AI$ nên $p' \equiv P$ tức là $P$ là tâm $(ARLDI)$

Gọi $Z'$ đối xứng $Z$ qua $N$ thì $Z'PZM$ là hình bình hành nên $PZ' = ZM = \frac{IL}{2} \implies Z'$ là trung điểm $RL$

Gọi $V$ là trung điểm $RS$. Ta có $\angle VRZ' = \angle RIZ$ và $\angle RVZ' = \angle RSL = \angle AZL$ nên $\triangle RZ'V \sim \triangle ILZ$

Từ đây ta có $\frac{RZ'}{RV}= \frac{IL}{IZ} \implies  \frac{RZ'}{RS}= \frac{IL}{IJ}$ nên $\triangle ILJ \sim \triangle RSZ'$. Từ đây có $\angle RSZ' = \angle AJL$ mà $AJ \perp SR$ nên $LJ \perp SZ'$

$ON \parallel SZ'$ do là đường trung bình nên $ON \perp LJ$  $\square$

Hình gửi kèm

  • Untitled.png



#669403 Bài toán T12/471 THTT

Gửi bởi manhtuan00 trong 22-01-2017 - 19:11

Lời giải của em ạ 
Gọi $X,Y$ là điểm chính giữa cung $AC,AB$ thì $Q,P$ đối xứng $A$ qua $X,Y$

Từ đây ta có $QM$ đi qua tâm bàng tiếp $I_b$ và $PN$ đi qua tâm bàng tiếp $I_c$

$I_bI_C$ cắt $BC$ tại $T$, $S$ là chân đường phân giác trong góc $\angle A$ thì $(TRMN)= (TAI_bI_c) = -1$ nên $AR$ cũng là phân giác $\angle MAN$




#669147 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong 20-01-2017 - 23:33

Bài toán 140 : (sách) Cho tứ giác $ABCD$ nội tiếp. Giả sử rằng tồn tại điểm $X$ để $\angle XAD = \angle XBA = \angle XCB = \angle XDC$. Chứng minh rằng tứ giác $ABCD$ điều hòa




#669145 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong 20-01-2017 - 23:22

Lời giải bài 139 ( cách của em tính khá trâu bò ạ )

Ta có $(NE,AC) = -1$ nên $\frac{\overline{NA}}{\overline{NC}} = \frac{p-a}{p-c}$

Vậy tức là $\frac{\overline{NA}}{\overline{NA}+b}= \frac{p-a}{p-c}$ nên $\overline{NC} = |\frac{b(p-c)}{a-c}|$

Lại có $AQ = \frac{p-a}{cos \angle A}$ nên $CQ = b - AQ = b - \frac{p-a}{cos \angle A}$

Áp dụng đinh lý hàm cos có : $cos \angle A = \frac{b^2+c^2-a^2}{2bc}$

Vậy ta có $\overline{CQ} = \frac{b^3+bc^2-ba^2-b^2c-bc^2+abc}{b^2+c^2-a^2} = \frac{b^3-ba^2-b^2c+abc}{b^2+c^2-a^2}$

Vậy $\frac{\overline{CQ}}{\overline{CN}} = \frac{p-a}{cos \angle A}= |\frac{(b^3-ba^2-b^2c+abc)(a-c)}{(b^2+c^2-a^2)(p-c).b}| = |2\frac{(a-b)(a-c)}{b^2+c^2-a^2}|$

Tương tự ta có $\frac{\overline{BP}}{\overline{BM}} = |2\frac{(a-b)(a-c)}{b^2+c^2-a^2}|$

Nên $\frac{\overline{CQ}}{\overline{CN}}=\frac{\overline{BP}}{\overline{BM}}$ Áp dụng bổ đề E.R.I.Q  ta có trung điểm $MN,PQ,BC$ thẳng hàng

Hình gửi kèm

  • 16195453_1039342172878656_3134219046145182669_n.jpg



#668533 cm với mọi $n$, luôn tồn tại số nguyên $x,y$ sao cho...

Gửi bởi manhtuan00 trong 16-01-2017 - 16:02

Vì khi $p_i \neq 7$ thì sẽ tồn tại $y$ để $7y -1 \vdots p_i^{\alpha_i}$ thì $(7y-1)(7y+1) \vdots p_i^{\alpha_i}$

Chọn tiếp $x \equiv 3y$ thì sẽ có $(x-3y)(x+3y) \vdots p_i^{\alpha_i}$ kết hợp 2 điều trên thì có $x^2-58y^2+1 \vdots p_i^{\alpha_i}$




#668503 cm với mọi $n$, luôn tồn tại số nguyên $x,y$ sao cho...

Gửi bởi manhtuan00 trong 16-01-2017 - 01:25

$x^2 - 58y^2+1 = x^2 - 9y^2 - (49y^2-1) = (x-3y)(x+3y) - (7y-1)(7y+1)$

Đặt $n = \prod p_i^{\alpha_i}$

Khi $p_i \neq 7$ ta chọn $7y \equiv 1$ và $x \equiv 3y (\text{p_i^{\alpha_i}}$ thì sẽ có $p_i^{\alpha_i} | x^2 - 58y^2+1$

Khi $p_i = 7$

Ta sẽ chứng minh quy nạp : với mọi $k$ thì tồn tại $x,y$ để $7^k | x^2 - 58y^2+1$

Với $k=1$ ta chọn $x = 7, y = 2$

Giả sử giả thuyết quy nạp đúng với $k$ ta chứng minh đúng với $k+1$

Ta có $x_0^2 - 58y_0^2 +1 \vdots 7^k$. Đặt $x_0^2 - 58y_0^2 +1 = 7^k. T$. Ta có $x_0, y_0$ không cùng chia hết cho 7 nên tồn tại các số $a,b$ sao cho $a . 2x_0-b.10y_0 +T \vdots 7$

Khi đó, ta chọn $X = x_0+a.7^k, Y = y_0+b.7^k$ thì $X^2-58Y^2+1 \vdots 7^{k+1}$. Ta có điều cần chứng minh là đúng

Vậy với mỗi $p_i$ tồn tại $x_i, y_i$ để $x_i^2-58y_i^2+1 \vdots p_i^{\alpha_i}$

Ta chọn $X \equiv x_i (\text{mod p_i^{\alpha_i}}), Y  \equiv y_i (\text{mod p_i^{\alpha_i}})$ thì ta có $X^2-58Y^2+1 \vdots n$. Vậy ta có điều cần chứng minh




#668311 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong 14-01-2017 - 20:58

Lời giải bài toán 121 : 

Gọi $J$ là giao điểm của $AP$ với $QR$. Do $AP \perp AQ$ nên $AP \parallel OR \implies R$ là trung điểm $OJ$.

$(K)$ tiếp xúc $(O)$ tại $S$. Gọi $U,V$ lần lượt là điểm chính giữa cung $AQ$ của $(O)$, cung $EF$ của $(K)$.

$SI$ là trung tuyến, $SA$ là đường đối trung $\triangle ESF$ nên $SA,SU$ đẳng giác trong $\angle ESF$. Từ đây ta có $S,U,V$ thẳng hàng

Thật vậy, theo bài toán 111 thì $DV \parallel UM$

Từ đây ta có $\triangle RUM$ và $\triangle NVD$ có các cặp cạnh tương ứng song song $\implies R,N,S$ thẳng hàng

Theo định lý Thales thì $\frac{OR}{KN} = \frac{OS}{KS} \implies OR = \frac{OS}{KS} . \frac{AK}{2}$

Ta có $\triangle QBP \sim \triangle AFK$ nên $\frac{QP}{PB} = \frac{AK}{KF} \implies \frac{2OS}{PB} = \frac{AK}{KS}$

Kết hợp 2 điều trên ta có $OR.PB = R^2 = OR.PI \implies \frac{OR}{OA} = \frac{OP}{PI} \implies \triangle RAO \sim \triangle OIP \implies \angle RQO = \angle RAO = \angle OIP$

$\implies RQ$ và $AP$ cắt nhau trên $(IOQ)$ tức là $JIOQ$ nội tiếp

Lại có $PR$ là trung tuyến $\triangle PQJ$ nên $PR$ là đường đối trung của $\triangle PIO$. Ta có điều cần chứng minh

P/s : bạn Bảo nhanh quá @@

Hình gửi kèm

  • Untitled.png



#667948 VMF's Marathon Hình học Olympic

Gửi bởi manhtuan00 trong 10-01-2017 - 22:49

$\boxed { Lời \ giải \ bài \ 109 }$ Bài toán trên tương đương với bài toán sau 

Cho $\triangle ABC$ với $I,J$ lần lượt là tâm nội tiếp và tâm bàng tiếp góc $\angle A$. $K$ là trung điểm cung lớn $BC$. $JK$ cắt $(O)$ tại $X$. $E,F$ là hình chiếu của $X$ lên $IC,IB$. Chứng minh rằng trung điểm $EF$ nằm trên trung trực $BC$

 

Chứng minh : Gọi $M,N, G$ lần lượt là tâm bàng tiếp góc $\angle B, \angle C$, trung điểm $BC$. Ta cần chứng minh $KG$ đi qua trung điểm $EF$, $JK$ cắt $BC$ tại $T$

Ta sẽ chứng minh $\frac{BF}{CE} = \frac{BM}{CN}$

Ta có : $\frac{BF}{CE} = \frac{BF}{BX} .\frac{BX}{CX} . \frac{CX}{CE} = \frac{cos \angle FBX}{cos \angle ECX} . \frac{sin \angle XCB}{sin \angle XBC} = \frac{sin \angle XBJ}{sin \angle XCJ} . \frac{sin \angle XCB}{sin \angle XBC}$

Gọi $U,V$ là trung điểm cung lớn $AC,AB$ khi đó 

$\frac{sin \angle XBJ}{sin \angle XCJ} . \frac{sin \angle XCB}{sin \angle XBC} = \frac{sin \angle XBJ}{sin \angle XCJ} . \frac{sin \angle XCB}{sin \angle XBC} $

$= \frac{sin \angle JKU}{sin \angle JKV} . \frac{sin \angle JKB}{sin \angle JKC} $
$= \frac{sin \angle KJM}{sin \angle KJN} . \frac{sin \angle JKB}{sin \angle JKC} $
$= \frac{JN}{JM} . \frac{sin \angle TKB}{sin \angle TKC} $
$= \frac{JN}{JM} . \frac{ TB}{TC} = \frac{JN}{JM} . \frac{ JM^2}{JN^2}= \frac{JM}{JN}$
Vậy ta có $\frac{BF}{CE}=  \frac{JM}{JN}$ nên theo bổ đề E.R.I.Q ta có trung điểm $BC,EF,MN$ thẳng hàng tức là trung điểm $EF$ nằm trên trung trực $BC$
 
$\boxed { Bài \ toán \ 110} $ (sách) Cho $\triangle ABC$ nội tiếp $(O)$ , $K,L$ là tâm bàng tiếp góc $\angle B, \angle C$. $(K)$ tiếp xúc $BA,BC$ tại $B_1,B_2$, tương tự ta có $C_1,C_2$. $B_1B_2$ cắt $C_1C_2$ tại $N$. Chứng minh rằng $AN \perp BC$



#665946 Tuần 4 tháng 12/2016 : Bài toán chia đôi cạnh

Gửi bởi manhtuan00 trong 26-12-2016 - 21:29

Cách của Tuấn là theo hướng đáp án. Mình xin giới thiệu bài toán sau để mọi người cùng trao đổi.

 

Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, đường tròn nội tiếp $(I)$ tiếp xúc $BC$ tại $D$. $AK$ là đường kính của $(O)$. Lấy $L$ sao cho $IL\perp AD$ và $AL\perp BC$. Chứng minh rằng $KL$ chia đôi $ID$.

 

Bài toán này có 1 phần từ AoPS và 1 phần do mình tạo ra, đây là bài toán có nội dung đẹp và chính là nguồn gốc của bài toán tuần này.

Đoạn chứng minh bổ đề em làm tắt 1 đoạn ạ, em bổ sung nốt phần chứng minh $LK$ chia đôi $ID$ ạ

$(I)$ tiếp xúc $CA,AB$ tại $E,F$.$IL$ cắt $BC$ tại $M$ khi đó $M,E,F$ thẳng hàng.

Gọi $H$ là trung điểm $MD$,$AH$ cắt $(O)$ tại $G$. $S$ là trung điểm $ID$.Theo phần trên, ta có $G,S,K$ thẳng hàng

$IL$ cắt $AD$ tại $U$. Khi đó $U,D$ đối xứng nhau qua $HS$ nên tứ giác $HUSD$ nội tiếp 

Từ đây suy ra tứ giác $HGUD$ nội tiếp. Gọi $R$ là chân đường cao hạ từ $A$ của $\triangle ABC$

Có $UL \perp AD, AL \perp BC$ nên $RLUD$ nội tiếp nên ta có $\angle ALU = \angle ADR = \angle AGU$

$\implies $ tứ giác $AGLU$ nội tiếp. Từ đây suy ra $GL \perp GA \implies G,L,S,K$ thẳng hàng




#665925 Tuần 4 tháng 12/2016 : Bài toán chia đôi cạnh

Gửi bởi manhtuan00 trong 26-12-2016 - 20:12

Cách của em hơi dài ạ 
Ta chứng minh bổ đề sau
Bổ đề : Cho $\triangle ABC$, đường tròn Mixtilinear nội tiếp xúc $(O)$ tại $D$, tiếp xúc $CA,AB$ tại $E,F$. Tiếp tuyến tại $D$ của $(O)$ cắt $BC$ tại $P$.$AD$ cắt $EF$ tại $L$. Khi đó $PL \perp AO$
Chứng minh Gọi $f(X)$ là ảnh của $X$ qua phép nghịch đảo $I^A_{AB.AC}$ hợp với phép đối xứng trục qua phân giác $\angle BAC$
Khi đó $f(B)= C, f(C) = B, f((I)) = (J)$ là đường tròn bàng tiếp $\angle A$. $f(D), f(E), f(F) $ là tiếp điểm của $(J)$ với $BC,CA,AB$. $f(L) $ là giao của $Af(D)$ với$ (Af(E)f(F))$. $f(P)$ là giao của đường tròn qua $D$ tiếp xúc $BC$ và $(ABC)$
 
Viết lại bài toán dưới cấu hình đường tròn nội tiếp, ta được bài toán tương đương : 
Cho $\triangle ABC$ với đường tròn nội tiếp $(I)$ tiếp xúc $BC,CA,AB$ tại $D,E,F$. $AH$ là đường cao ($H \in BC$). $AD$ cắt $(AEF)$ tại $M$. Đường tròn qua $A,M$ trực giao với $AH$ cắt $(O)$ tại $G$. Chứng minh rằng $(AGD)$ tiếp xúc $(O)$
 
$IM$ cắt $BC$ tại $S$. Khi đó $S,E,F$ thẳng hàng. 
Gọi $A'$ đối xứng $A$ qua $O$, $IM$ cắt $AH$ tại $R$ và $T$ là trung điểm $ID$ 
Theo 1 bài toán quen thuộc thì $R,T,A'$ thẳng hàng. Lại có $\angle AGR = 90^{\circ}$ nên $G,R,T,A'$ thẳng hàng
$X$ là trung điểm $SD$ , $AX$ cắt $(O)$ tại $G'$, $G'A'$ cắt $ID$ tại $T'$
Ta có $XD^2 = XB.XC = XG'.XA \implies (AG'D)$ tiếp xúc $(I)$ tại $D$
Gọi $K$ là tâm $(AG'D)$ .Khi đó $K,I,D$ thẳng hàng
Có $\angle XG'D = \angle XT'D = 90^{\circ} - \angle KDA \implies SH \perp AD$
Lại có $SI \perp AD \implies T'X \parallel IS \implies T'$ là trung điểm $ID$
Vậy $G \equiv G' \implies (AGD)$ tiếp xúc $BC$. Ta có điều cần chứng minh
 
Quay lại bài toán :
Tiếp tuyến của $(O)$ tại $A$ cắt $BC$ tại $S$
Ta cần chứng minh $P$ là trung điểm $QR$ . Điều cần chứng minh tương đương với $A(SP,QR) = -1$ hay $(SP,MN) = -1$
Gọi $X,Y$ lần lượt là điểm chính giữa cung nhỏ, cung lớn $BC$
$A'$ đối xứng $A$ qua $O$, $A'I$ cắt $(O)$ tại $Z$ khác $A'$. Khi đó ta có $N,D,A'$ thẳng hàng
$E,F$ là tiếp điểm của đường tròn $(K)$ với $CA,AB$ khi đó $M,I,E,F$ thẳng hàng
Ta sẽ chứng minh $M,D,X$ và $M,A,Z$ thẳng hàng 
Gọi $A_1,B_1,C_1$ là các tiếp điểm của đường tròn nội tiếp $(I)$ với $BC,CA,AB$
$\implies ZA_1$ là phân giác $\angle BZC$ nên $Z,A_1,X$ thẳng hàng
Ta có $XA_1.XZ = XI^2$ nên $\triangle XA_1I \sim \triangle XIZ$ . Từ đây ta có $\angle IMA_1 = \angle XIA_1 = \angle XZI \implies$ tứ giác $ZIA_1M$ nội tiếp. Từ đây ta có $M,Z,A$ thẳng hàng
Do $DY$ vừa là đường đối trung của $\triangle IBC$ vừa là đường phân giác của $\triangle DBC$ nên $\frac{DB}{DC}= \frac{IB^2}{IC^2}$
Ta có $\frac{MB}{MC} = \frac{ZB}{ZC}.\frac{AB}{AC}= \frac{BC_1}{CB_1}.\frac{AB}{AC}= \frac{A_1B}{A_1C}.\frac{c}{b}= \frac{p-b}{p-c} = \frac{IB^2}{IC^2}= \frac{DB}{DC}= \frac{DB}{DC}.\frac{XB}{XC} \implies M,D,X$ thẳng hàng
Theo bổ đề, ta có $DP$ là tiếp tuyến tại $D$ của $(O)$
$DS$ cắt $(O)$ tại $V$. Áp dụng định lý cho bộ 6 điểm $(AZDVXA)$
$\implies ZV$ cắt $AX$ tại $P'$ trên $BC$ . Gọi $D'$ là giao của $DP'$ với $(O)$, $ZD$ cắt $AI$ tại $W$
Có $MD.MX = MI^2 = MA_2.MP' \implies $ tứ giác $A_1P'XD$ nội tiếp $\implies ZD' \parallel BC$
$\implies (YX,ZD) = -1 = D(YX,ZD) = D(IX,WP') = (IX,WP') = Z(IX,WP') = Z(A'X,DV) = (A'X,DV) = D(A'X,DV) = D(NM,PS) = (NM,PS)$
$\implies (NM,PS) = -1$ nên $P$ là trung điểm $RQ$.

Hình gửi kèm

  • Untitled.png
  • 1232.png