Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


AnhTran2911

Đăng ký: 10-03-2017
Offline Đăng nhập: Hôm qua, 23:49
***--

Chủ đề của tôi gửi

Thử latex

12-09-2018 - 21:27

3) Ta chọn được một số $n_{0}$ đủ lớn thỏa mãn mỗi $2017^{n_{0}}+2018^{n_{0}}-i$ có một ước nguyên tố $p_{i}$, các số nguyên tố này không nhất thiết phân biệt ( Với $i$ chạy từ $1$ đến $k$)

Lúc này để chứng minh dãy trên toàn hợp số với vô hạn $n$ thì ta chỉ cần chọn $n=n_{0}+t.\Pi_{1}^k(p_i-1)$ và từ đó theo định lí $Fermat$ bé ta có $2017^n+2018^n-i$ chia hết cho $p_{i}$ nên dãy này toàn là hợp số với vô số $n$ do ta cho $t$ chạy ra vô hạn


Ko73 cubic

25-08-2018 - 17:31

Chứng minh rằng điểm Kosnita của một tam giác nằm trên K073 cubic của tam giác đó


Related to point lies on Kiepert hyperbola

21-08-2018 - 23:52

Problem : If $P$ is a point on the Kiepert hyperbola then the circumcenter of its anticevian triangle, the orthocenter of $\triangle ABC$ and $P$ are collinear.
Solution : TelvCohl from AOPS
 
Lemma 1 : Given a $ \triangle ABC $ and a point $ P $. Let $ \triangle A^*B^*C^* $ be the circumcevian triangle of $ P $ WRT $ \triangle ABC $. Let $ K, $ $ K^* $ be the symmedian point of $ \triangle ABC, $ $ \triangle A^*B^*C^* $, respectively. Then $ K, $ $ P, $ $ K^* $ are collinear. 
 
 
Proof : Let $ T $ $ \equiv $ $ AK $ $ \cap $ $ \odot (ABC) $ and $ T^* $ $ \equiv $ $ A^*K^* $ $ \cap $ $ \odot (A^*B^*C^*) $. Let the Lemoine axis of $ \triangle ABC $ cuts $ BC, $ $ CA, $ $ AB $ at $ D, $ $ E, $ $ F $, respectively and let the Lemoine axis of $ \triangle A^*B^*C^* $ cuts $ B^*C^*, $ $ C^*A^*, $ $ A^*B^* $ at $ D^*, $ $ E^*, $ $ F^* $, respectively. Let $ A_1 $ $ \equiv $ $ BC $ $ \cap $ $ B^*C^*, $ $ B_1 $ $ \equiv $ $ CA $ $ \cap $ $ C^*A^*, $ $ C_1 $ $ \equiv $ $ AB $ $ \cap $ $ A^*B^* $ and let $ O $ be the circumcenter of $ \triangle ABC $ ($\triangle A^*B^*C^* $). 
 
Clearly, $ A_1, $ $ B_1, $ $ C_1 $ lie on the polar $ \tau $ of $ P $ WRT $ \odot (O) $. Since $ ABTC $ and $ A^*B^*T^*C^* $ are harmonic quadrilateral, so $ T, $ $ P, $ $ T^* $ are collinear $ \Longrightarrow $ $ AK $ $ \cap $ $ A^*K^* $ $ \in $ $ \tau $. Similarly, we can prove $ BK $ $ \cap $ $ B^*K^* $ $ \in $ $ \tau $ and $ CK $ $ \cap $ $ C^*K^* $ $ \in $ $ \tau $. Since the tangent of $ \odot (O) $ through $ B, $ $ C $ and $ AK $ are concurrent, so $ D $ lies on the polar of $ AK $ $ \cap $ $ A^*K^* $ WRT $ \odot (O) $. Similarly, we can prove $ D^* $ lies on the polar of $ AK $ $ \cap $ $ A^*K^* $ WRT $ \odot (O) $ $ \Longrightarrow $ $ D, $ $ P, $ $ D^* $ are collinear. Analogously, we can prove $ P $ $ \in $ $ EE^* $ and $ P $ $ \in $ $ FF^* $, so from Desargue theorem ($ \triangle B_1EE^* $ and $ \triangle C_1FF^* $) we get $ \tau, $ $ EF, $ $ E^*F^* $ are concurrent, hence their pole $ P, $ $ K, $ $ K^* $ WRT $ \odot (O) $ are collinear.
____________________________________________________________
Lemma 2 : Let $ P $ be a point on the Kiepert hyperbola of $ \triangle ABC $. Let $ \triangle P_aP_bP_c $ be the pedal triangle of $ P $ WRT $ \triangle ABC $ and let $ \triangle XYZ $ be the circumcevian triangle of $ P $ WRT $ \triangle P_aP_bP_c $. Then $ P $ lies on the Kiepert hyperbola of $ \triangle XYZ $.
 
Proof : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC $. Let $ \triangle Q_aQ_bQ_c, $ $ \triangle Q_AQ_BQ_C $ be the pedal triangle, circumcevian triangle of $ Q $ WRT $ \triangle ABC $. Let $ R $ be the isogonal conjugate of $ Q $ WRT $ \triangle Q_AQ_BQ_C $. Since $ \triangle Q_AQ_BQ_C $ $ \cup $ $ R $ $ \sim $ $ \triangle Q_aQ_bQ_c $ $ \cup $ $ Q $ $ \cong $ $ \triangle XYZ $ $ \cup $ $ P $, so it suffices to prove $ Q $ lies on the Brocard axis of $ \triangle Q_AQ_BQ_C $. Let $ O $ be the circumcenter of $ \triangle ABC $. Let $ K, $ $ K_Q $ be the symmedian point of $ \triangle ABC, $ $ \triangle Q_AQ_BQ_C $, respectively. From Lemma 1 we get $ K, $ $ Q, $ $ K_Q $ are collinear, so notice $ Q $ lies on the Brocard axis $ OK $ of $ \triangle ABC $ we conclude that $ Q $ $ \in $ $ OK_Q $ (Brocard axis of $ \triangle Q_AQ_BQ_C $).
 
Remark : There is a stronger result of Lemma 2 : If $ P $ is the Kiepert perspector of $ \triangle ABC $ with angle $ \theta $, then $ P $ is the Kiepert perspector of $ \triangle XYZ $ with angle $ -\theta $ (but we don't need this stronger result in the proof). 
____________________________________________________________
Now we recall two well-known properties about conic as following :
 
Property 1 : Given a $ \triangle ABC $ and two points $ P, $ $ Q $. Let $ \triangle P_aP_bP_c $ be the anticevian triangle of $ P $ WRT $ \triangle ABC $ and let $ \triangle Q_aQ_bQ_c $ be the anticevian triangle of $ Q $ WRT $ \triangle ABC $. Then $ P, $ $ Q, $ $ P_a, $ $ P_b, $ $ P_c, $ $ Q_a, $ $ Q_b, $ $ Q_c $ lie on a conic. 
 
Property 2 : Given a $ \triangle ABC $ and a point $ P $. Let $ I, $ $ I_a, $ $ I_b, $ $ I_c $ be the incenter, A-excenter, B-excenter, C-excenter of $ \triangle ABC $, respectively. Let $ \mathcal{H} $ be a conic passing through $ I, $ $ I_a, $ $ I_b, $ $ I_c $. Then the polar of $ P $ WRT $ \mathcal{H} $ passes through $ P^* $ where $ P^* $ is the isogonal conjugate of $ P $ WRT $ \triangle ABC $.
____________________________________________________________
From Property 1 and Property 2 we get the following lemma :
 
Lemma 3 : Let $ \mathcal{H} $ be a circum-rectangular hyperbola of $ \triangle ABC $ and let $ P, $ $ Q $ be the points on $ \mathcal{H} $. Let $ \triangle DEF $ be the cevian triangle of $ Q $ WRT $ \triangle ABC $ and let $ P^* $ be the isogonal conjugate of $ P $ WRT $ \triangle DEF $. Then $ PP^* $ is tangent to $ \mathcal{H} $.
 
Proof : Let $ I, $ $ I_a, $ $ I_b, $ $ I_c $ be the incenter, A-excenter, B-excenter, C-excenter of $ \triangle DEF $, respectively. From Property 1 we get $ A, $ $ B, $ $ C, $ $ Q, $ $ I, $ $ I_a, $ $ I_b, $ $ I_c $ lie on a conic $ \mathcal{C} $, but notice $ I $ is the orthocenter of $ \triangle I_aI_bI_c $ we get $ \mathcal{C} $ is a rectangular hyperbola $ \Longrightarrow $ $ \mathcal{C} $ $ \equiv $ $ \mathcal{H} $, so from Property 2 we conclude that $ P^* $ lies on the polar of $ P $ WRT $ \mathcal{H} $. i.e. $ PP^* $ is tangent to $ \mathcal{H} $
____________________________________________________________
Back to the main problem :
 
Let $ H $ be the orthocenter of $ \triangle ABC $. Let $ \triangle XYZ $ be the anticevian triangle of $ P $ WRT $ \triangle ABC $ and $ J $ be the circumcenter of $ \triangle XYZ $. Let $ \triangle A_1B_1C_1 $ be the pedal triangle of $ P $ WRT $ \triangle ABC $. Perform the Inversion with center $ P $ and denote $ V^* $ as the image of $ V $ ($ V $ is an arbitrary point). Obviously, $ \triangle A^*B^*C^* $ is the pedal triangle of $ P $ WRT $ \triangle A_1^*B_1^*C_1^* $ and $ \triangle X^*Y^*Z^* $ is the pedal triangle of $ P $ WRT the medial triangle $ \triangle A_2^*B_2^*C_2^* $ of $ \triangle A_1^*B_1^*C_1^* $, so $ PJ $ $ \equiv $ $ PJ^* $ passes through the isogonal conjugate $ Q^* $ of $ P $ WRT $ \triangle A_2^*B_2^*C_2^* $.
 
Let $ \triangle DEF $ be the anticomplementary triangle of $ \triangle ABC $. Let $ \triangle A_3^*B_3^*C_3^* $ be the cevian triangle of $ P $ WRT $ \triangle A_1^*B_1^*C_1^* $. From $ EF $ $ \parallel $ $ BC $ and $ A $ $ \in $ $ EF $ $ \Longrightarrow $ the image of the line $ EF $ under the Inversion is the circle with diameter $ PA_3^* $. Similarly, we can prove $ \odot (PB_3^*), $ $ \odot (PC_3^*) $ is the image of the line $ FD, $ $ DE $ under the Inversion, respectively, so $ \triangle D^*E^*F^* $ is the pedal triangle of $ P $ WRT $ \triangle A_3^*B_3^*C_3^* $. Since $ H $ is the circumcenter of $ \triangle DEF $, so we get $ PH $ $ \equiv $ $ PH^* $ passes through the isogonal conjugate $ R^* $ of $ P $ WRT $ \triangle A_3^*B_3^*C_3^* $.
 
Let $ G^* $ $ \equiv $ $ A_1^*A_2^* $ $ \cap $ $ B_1^*B_2^* $ $ \cap $ $ C_1^*C_2^* $ be the Centroid of $ \triangle A_1^*B_1^*C_1^* $. From Lemma 2 we know $ P $ lies on the Kiepert hyperbola of $ \triangle A_1^*B_1^*C_1^* $, so $ A_1^*, $ $ B_1^*, $ $ C_1^*, $ $ G^*, $ $ P $ lie on a rectangular hyperbola $ \mathcal{K} $, hence from Lemma 3 we conclude that $ P, $ $ Q^*, $ $ R^* $ lie on the tangent of $ \mathcal{K} $ through $ P $ $ \Longrightarrow $ $ P, $ $ J^*, $ $ H^* $ are collinear $ \Longrightarrow $ $ P, $ $ J, $ $ H $ are collinear.

$(x+1)(y+1)\mid{x^3+y^3+1}$

11-11-2017 - 22:29

Tìm $x,y\in{Z^+}$ thỏa mãn $(x+1)(y+1)\mid{x^3+y^3+1}.$


$\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\g...

24-07-2017 - 11:49

Bài 1: $a,b,c\ge{0}$ 

CMR: $\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\geq{\frac{a+b+c}{2}}$

Bài 2: $a,b,c\ge{0}$

CMR: $\frac{a^3}{2a^2+b^2}+\frac{b^3}{2b^2+c^2}+\frac{c^3}{2c^2+a^2}\geq{\frac{a+b+c}{3}}$

Spoiler