Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


lamNMP01

Đăng ký: 23-03-2017
Offline Đăng nhập: 17-03-2018 - 10:59
****-

#700730 ĐỀ THI OLYMPIC TOÁN TRƯỜNG ĐÔNG TOÁN PHỔ THÔNG KHU VỰC BẮC TRUNG BỘ NĂM 2017

Gửi bởi lamNMP01 trong 23-01-2018 - 19:39

File word cho những ai quan tâm ( không có hình ) ( mình không có giải hình ) 

File gửi kèm




#697557 $\sum_{i=1}^{n}\dfrac{\varphi(n)...

Gửi bởi lamNMP01 trong 01-12-2017 - 16:18

.

Hình gửi kèm

  • 24252283_2195979673962735_778798408_n.jpg



#696620 $\sum_{i=1}^{n}\dfrac{\varphi(n)...

Gửi bởi lamNMP01 trong 14-11-2017 - 23:22

Ta dùng kết quả sau đây $\sum_{n=1}^{\infty} \frac{\varphi(n) q^n}{1-q^n}= \frac{q}{(1-q)^2}$ [ dùng hàm Dirichlet ]

 

Từ đây ta có thể kết thúc bài toán




#693719 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Gửi bởi lamNMP01 trong 25-09-2017 - 23:18

Bài 4 số số lớn nhất là 2014 , điều này xảy ra khi đổi 1 - 2010 1 lượt rồi đổi 2008-2017 .

 

Ta xét Si là tổng các số có vị trí i đồng dư theo mod 10 . Bất biến là nếu 1 lượt biến đổi thì các Si đều bằng nhau :)




#693718 $-3.\frac{2^{p-1}-1}{p}$

Gửi bởi lamNMP01 trong 25-09-2017 - 23:02

22017053_2157421444485225_123347820_o.jpg 22015430_2157421434485226_707358681_o.jpg

 

 




#692655 $f(x).f(x^{1975}+x^{54})=f(x^{2013}+x)$

Gửi bởi lamNMP01 trong 08-09-2017 - 22:30

Tìm mọi hàm f từ R --> R thoả mãn

 

i) $ \displaystyle\lim_{x\to\ 0}f(x)=0=f(0)$

ii) $f(x).f(x^{1975}+x^{54})=f(x^{2013}+x)$




#690304 $n^p-p$ không chia hết cho q

Gửi bởi lamNMP01 trong 12-08-2017 - 09:17

Biết là hơi  lạ nhưng 1 ông giáo sư Nga ( Fedor Petrov ) ( mình có kết bạn với ông này ) đã chứng minh 1 kết quả như sau .

 

Phương trình đồng dư x^p = p ( mod q) vô nghiệm khi và chỉ khi :

 

i) q đồng dư 1 mod p

ii)p ^ (q-1/p) không đồng dư 1 mod q




#690290 Marathon số học Olympic

Gửi bởi lamNMP01 trong 12-08-2017 - 00:17

Bài này là của Gabriel Dospinesscu, có thể tham khảo cuốn Straight from the book, lời giải khá hay.

Lời giải dùng vành đóng của vành Z(i) :)




#688198 58th IMO 2017

Gửi bởi lamNMP01 trong 20-07-2017 - 23:09

Bài 6 có 1 cách rất hay , chính là cách của Evan trong Aops , nếu ai đó đã có  học bài Hungarian MO 99 bổ trợ thì ý tưởng hoàn toàn là tự nhiên , đơn thuần là dùng nội suy Lagrange kiểm soát đa thức hữu tỷ rồi chỉnh các $ci$ thoả mãn 




#688108 58th IMO 2017

Gửi bởi lamNMP01 trong 20-07-2017 - 09:01

Theo như v_Enhance trên AoPS thì bài này không giải được bằng cách sử dụng định lý Erdos Szekeres (https://artofproblem...2017_problem_5)(#4) ?

Có ai nói đó là cả bài đâu :) chỉ là 1 đoạn con thôi . Nếu giải bằng nó thật thì đã không phải IMO




#688083 58th IMO 2017

Gửi bởi lamNMP01 trong 19-07-2017 - 22:12

Bài 5 : Erdos 1935 . Cho ab+1 số thực phân biệt , khi đó tồn tại 1 tập con a+1 hoặc b+1 số liên tiếp tăng hoặc giảm liên tiếp .

 

Áp dụng 2 lần cho n , ta có đpcm




#687894 Đề luyện tập olympic khối 11 tuần 3 tháng 7

Gửi bởi lamNMP01 trong 18-07-2017 - 10:47

Bài 3. Sử dụng dạng yếu của định lý Dirichlet: tồn tại vô hạn số nguyên tố dạng $nk+1$ với $k$ cố định (chứng minh sơ cấp cái này có thể tham khảo đáp án của Olympic toán học HS - SV năm nay)

Chọn $p \equiv 1 \pmod k$ thì hiển nhiên tồn tại một dãy $a_n$ thỏa mãn bài toán.

 

Tổng quát nhất có lẽ là định lý Green- Tao cho dãy đa thức nguyên 




#687893 Đề luyện tập olympic khối 11 tuần 3 tháng 7

Gửi bởi lamNMP01 trong 18-07-2017 - 10:44

Mình là người ra cái bài 5 này . Thật ra là nó là đề OLympic SV Quốc tế IMC 2002 và Bulagria TST năm nào đó, chắc chắn là rất quen thuộc với tất cả mọi người. Bài này có cách dùng phương pháp xác xuất hay lắm 




#687886 Đề luyện tập olympic khối 11 tuần 3 tháng 7

Gửi bởi lamNMP01 trong 18-07-2017 - 09:50

Bài 2 (Gabriel Dospinescu ) . Thôi spoiler quá :)




#687188 Chứng minh rằng: $m\leq C_{n-1}^{k-1}.$

Gửi bởi lamNMP01 trong 10-07-2017 - 23:06

Đây chính là định lý Erdos-Ko-Rado

 

Bổ đề 1 : Với mỗi $0 <= s<= n-1$ Xét tập con $A_s$ = { s, s+1,...........s+k-1 } mà phép cộng tính trong Zn

Cmr F chứa nhiều nhất k tập con kiểu $A_s$

 

Áp dụng bổ đề vào cm định lý này :

 

Xét 1 hoán vị con phi của { 0,1,2,........,n-1 } và i={0,1,.......n-1} được chọn 1 cách ngẫu nhiên và độc lập , và xét tập A chứa  các hoán vị phi i , phi i+1,......... phi i+k-1 } và vẫn tính trên Zn

 

Khi đó ta có Pr[A thuộc F] <= k/n. Nhưng A chọn ngẫu nhiên trong bộ k phần tử nên 

 

k/n >= Pr[A thuộc F]= |F|/ nCk

 

Nên |F| <=............. ta có đpcm