Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Minhnksc

Đăng ký: 23-03-2017
Offline Đăng nhập: 26-08-2020 - 22:29
***--

Bài viết của tôi gửi

Trong chủ đề: Sir Michael Atiyah đưa ra chứng minh mới cho giả thuyết Riemann

20-09-2018 - 22:00

 

Title: The Riemann Hypothesis

 

Abstract: The Riemann Hypothesis is a famous unsolved problem dating from $1859$. I will present a new simple proof using a radically new approach. It's based on work of von Neumann ($1936$), Hirzebruch ($1954$), Dirac ($1928$).

 

Cực kì phấn khích vì tin này dù chưa biết sẽ ra sao.

Ơ em tưởng cái up trên fb là meme; hóa ra thật à :D :D


Trong chủ đề: Tìm số người nói thật nhiều nhất có thể

12-08-2018 - 12:14

Các bạn học sinh xếp hàng dọc sao cho đếm từ trái sang, hàng thứ nhất có n bạn, hàng thứ 2 có n-1 bạn,... cho đến hàng thứ n có 1 bạn. Các bạn đều quay mặt về phía hàng thứ nhất. Ví dụ với $n=5$ (mỗi dấu * đại diện cho một bạn):

*

* *

* * *

* * * *

* * * * * (hàng thứ nhất)

Mỗi bạn được phép chọn duy nhất một mệnh đề trong 2 mệnh đề dưới đây để phát biểu ( trừ bạn đứng đầu hàng):

 

Mệnh đề 1: "Bạn trước mặt mình là người nói thật, bạn bên trái của bạn trước mặt mình là người nói dối."

 

Mệnh đề 2: "Bạn trước mặt mình là người nói dối, bạn bên trái của bạn trước mặt mình là người nói thật."

 

Với n=2015. Hãy tìm số người nói thật nhiều nhất có thể

 

P/s: Mọi người giải thích kĩ giúp mình một chút :D , nói thật nói dối nó cứ loạn xì ngầu ra ấy :D

Xin phép đào mộ tí :D; bài này anh chôm từ VMEO mà. Đề có ở đây

https://diendantoanh...-toán-xếp-hàng/

Ý là mỗi học sinh được chọn một trong hai mệnh đề trên [trừ bạn đầu hàng ra]; và các bạn đầu hàng là nói dối hoặc nói thật tùy ý. Khi đó các bạn đứng liền trước với các bạn đầu hàng kiểm tra xem mệnh đề mình chọn có đúng hay ko [Nếu đúng thì là nói thật; sai thì ngược lại]; Quá trình tiếp tục cho đến bạn cuối cùng. Khi đó đếm số bạn nói thật ra. Mục đích là các bạn ko đứng đầu hàng sẽ chọn mệnh đề và các bạn đứng đầu hàng sẽ nói dối hoặc thật sao cho ng nói thật nhiều nhất :D


Trong chủ đề: 1+1=''Quả cam" ?

22-07-2018 - 20:34

Hãy sử dụng các kiến thức đã học qua để cmr

1+1= "Quả cam"

P/s: Nghiêm cấm tuyên truyền dưới mọi hình thức tới trẻ em dưới 6 tuổi và trẻ em đang tính bằng que tính :icon6:

1+1 khác "Quả cam" chứ

Một nửa cái phao cộng với một nửa cái phao sao thành hình cầu được :D


Trong chủ đề: Đề thi IMO 2018

10-07-2018 - 18:45

Ngày thi thứ hai:

[Mình lười không đánh latex nên chỉ có thế này thôi :D]

File gửi kèm  36937009_2159115877704465_8505443157834465280_n.jpg   60.59K   205 Số lần tải


Trong chủ đề: Marathon tổ hợp rời rạc VMF 2018

02-07-2018 - 20:11

Như đã hẹn; bài toán số 3 vẫn chưa có người giải nên mình post bài mới:

Bài toán 4:

Gần đây; cảnh sát đang điều tra một vụ đánh cắp tài khoản ngân hàng. Để tìm ra tài khoản của hung thủ; ta cần biết một số thông tin: tài khoản ngân hàng gồm 14 chữ số từ 0 tới chín. Mỗi tài khoản được đánh dấu là đáng nghi nếu bị nghi ngờ là tài khoản của hung thủ; còn không đáng nghi trong trường hợp ngược lại. Sau khi điều tra; người ta thấy rằng nếu tài khoản $x_1x_2x_3...x_{14}$  đáng nghi thì trong các tài khoản $y_1y_2y_3...y_{14}$ thỏa mãn tồn tại tập $S$ sao cho $S\subset \left\{1;2;...;14\right\}$ và $|S|=13$ sao cho $x_i=y_i \forall i\in S$; có ít nhất chín tài khoản đáng nghi. Tìm số nhỏ nhất các tài khoản đáng nghi