Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Minhnksc

Đăng ký: 23-03-2017
Offline Đăng nhập: 26-08-2020 - 22:29
***--

Chủ đề của tôi gửi

Tồn tại B là con của A mà B là sum - free và $|B|>|A|/3$

19-04-2019 - 21:30

Một tập A được gọi là sum - free nếu không tồn ại $x;y;z$ thuộc A mà $x+y=z$. Chứng minh với mọi tập A gồm một số số nguyên dương; tồn tại B là con của A mà B là sum - free và $|B|>|A|/3$


$f'\left ( x+y \right )\geq f\left ( x \right )f'...

18-01-2019 - 20:52

Tìm $f:\mathbb{R}\rightarrow \mathbb{R}$ sao cho f bị chặn; khả vi trên $\mathbb{R}$ và thỏa mãn

i)$\left | f\left ( 0 \right )-f\left ( 1 \right ) \right |>2$

ii)$f'\left ( x+y \right )\geq f\left ( x \right )f'\left ( y \right )$ mọi số thực x;y mà $y\in \left ( 0;1 \right )$\

iii) f' liên tục trên $\mathbb{R}$


$\sum_{k=2}^{n} \omega(k) \geq cn.log(log(n))$

05-11-2018 - 22:54

Gọi $\omega(n)$ là số ước nguyên tố của $n$ .Chứng minh với mọi $c<1$ thì tồn tại $n$ sao cho :

$\sum_{k=2}^{n} \omega(k) \geq cn.log(log(n))$

[log ở đây mình ký hiệu thay cho $log_e$]


Chứng minh tồn tại đường thẳng qua $O$ mà nó có điểm chung với ít nhất $...

27-09-2018 - 23:05

Cho điểm $O$ và $n$ hình tròn đóng đơn vị phân biệt trên mặt phẳng thỏa mãn

$i.$ Không có hình tròn nào có biên đi qua $O$

$ii.$ Hình đóng tâm $O$ bán kính $k + 1$ chứa tâm của ít nhất $k$ trong số các tâm của $n$ hình tròn trên

Chứng minh tồn tại đường thẳng qua $O$ mà nó có điểm chung với ít nhất $\frac{2}{\pi}.log(\frac{n+1}{2})$ hình tròn đã cho 

P/s: "Ăn cắp" từ một bài của Romania :D


Chứng minh tồn tại một đỉnh có bậc $2k$ trong một đồ thị hoàn chỉnh có $...

13-08-2018 - 23:57

Cho trước một đồ thị $G =(V;E)$ là một đồ thị đơn. Ta sẽ nêu thêm một số định nghĩa sau

 Đồ thị $G'=(V';E')$ là phần bù của G nếu nó là một đồ thị đơn sao cho $V=V'$ và nếu hai cạnh giữa $u;v \in V$ được nối trong G thì không được nối trong G' [và ngược lại]

 Gọi ánh xạ $\phi_G$ là ánh xạ nhận diện của đồ thị G đặt tương ứng cạnh của G với hai đầu mút của nó [là một cặp không sắp thứ tự]; . 

 Đồ thị $G=(V;E)$ và đồ thị $H=(V";E")$ đẳng cấu với nhau nếu tồn tại hai song ánh $\alpha:V\rightarrow V"$ và $\beta: E\rightarrow E"$ thỏa mãn nếu $ \phi_H(e) =uv$  thì $\phi_G(\beta(e)) = \alpha(u)\alpha(v)$

 Đồ thị G là tự hoàn chỉnh nếu nó và phần bù của nó đẳng cấu với nhau

a]Chứng minh đồ thị G hoàn chỉnh thì nó có số đỉnh chia hết cho 4 hoặc chia 4 dư 1

b]Chứng minh tồn tại một đỉnh có bậc $2k$ trong một đồ thị hoàn chỉnh có $4k+1$ đỉnh