Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


chuyenquangtrungbinhphuoc

Đăng ký: 01-05-2017
Offline Đăng nhập: 26-12-2019 - 21:19
*----

Bài viết của tôi gửi

Trong chủ đề: Tuần 1 tháng 5/2017: Chứng minh rằng $JH \perp IO$.

01-05-2017 - 12:35

Lời giải bài 1 của mình:

Gọi $S$, $T$ thứ tự là giao của $IC$, $IB$ với $(O)$. $X$ là trung điểm $ST$. 

Áp dụng định lý com bướm ta có $X, I, K$ thẳng hàng và $I$ là trung điểm $SK$. Gọi $Y$ là trung điểm $AX$ theo định lý Thales ta có $M$ là trung điểm $YJ$. 

Ta có $\angle AIM = 2\angle AXM = 2\angle MXY= 2(90^{\circ}-\angle MIX)$. Nên $AYIN$ nội tiếp dẫn đến $MY.MN= MA.MI$ hay $MA.MA= MJ.MN$ nên $AM$ là tiếp tuyến của $(AJN)$ hay ta chỉ cần chứng minh $AJIH$ nội tiếp. Đúng vì khi lấy đối xứng trục của $AJIH$ qua trục $AI$ thì trở thành $(AIN)$. Ta có $DPCM$ 

kb đi cho mình hỏi bạn cái này!