Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


MoMo123

Đăng ký: 07-06-2017
Offline Đăng nhập: Riêng tư
***--

Bài viết của tôi gửi

Trong chủ đề: giải phương trình$x^3-\sqrt[3]{6+\sqrt[3]{x+6...

07-09-2018 - 16:29

Đây nhé  ;)


Trong chủ đề: Chứng minh $AA_{2},BB_{2},CC_{2}$...

06-08-2018 - 23:31

Bài này chủ yếu là dựa vào hai bổ đề:
1) Cho điểm $M$ bất kì trong tam giác $ABC$. Gọi $M_1, M_2, M_3$ lần lượt là điểm đổi xứng của $M$ qua trung điểm các cạnh $BC,CA,AB$ thì $AM_1, BM_2, CM_3$ đồng quy
Chứng minh đơn giản, để ý các hình bình hành được tạo ra. Ba đường đó đồng quy tại trung điểm mỗi đường.
2) Cho tứ giác $ABCD$, gọi $AB$ cắt $CD$ tại $E$, $AD$ cắt $BC$ tại $F$ thì trung điểm $AC, BD, EF$ thẳng hàng (nói cách khác, trung điểm của các đường chéo của một tứ giác toàn phần thẳng hàng)
Đường thằng này gọi là đường thẳng Newton-Gauss, có thể chứng minh bằng cách dùng diện tích hình bình hành hoặc định lý Menelaus.
Quay trở lại bài toán. Gọi $M_1, M_2, M_3$ là điểm đối xứng của $M$ qua trung điểm $BC,CA,AB$. Áp dụng bổ đề 2 cho ta $A, A_2, M_1$ thẳng hàng. Tương tự $B, B_2, M_2$ thẳng hàng và $C, C_2, M_3$ thẳng hàng. Như vậy ta cần chứng minh $AM_1, BM_2, CM_3$ đồng quy, chính là bổ đề 1 ở trên.
Mặt khác chúng đồng quy tại trung điểm $AM_1$, mà dễ dàng chứng minh được $G$ là trọng tâm tam giác $AMM_1$ nên suy ra điểm đồng quy thuộc $MG$
 
P/S: không biết có lời giải nào hay hơn bằng vectơ không, bài này là toán 10 mà nhỉ

Làm sao để $A,A_{2},M_{1}$ thẳng hàng theo bổ đề 2 vậy ạ, em chưa hình dung ra lắm

có lời giải mà em :))


Không có em mới đăng lên đây chứ :D


Trong chủ đề: Chứng minh $AA_{2},BB_{2},CC_{2}$...

06-08-2018 - 16:13

Bài này có trong tài liệu chuyên Toán 10 Hình học.

Thì em lấy trong sách đó ra mà ạ, cơ mà em không biết làm nên mới đăng lên đây ạ, anh cho em tham khảo cách giải với ạ, em cảm ơn nhiều.


Trong chủ đề: [TOPIC] $\text{Luyện đề ôn thi} $ $\boxed{\...

03-08-2018 - 16:51

TOPIC đã kết thúc, để tránh tình trạng spam, mình xin khóa TOPIC. Cảm ơn vì mọi người đã tham gia TOPIC nhiệt tình


Trong chủ đề: Cho một hình chữ nhật có kích thước $n\times [(n-1)n+1]$....

28-07-2018 - 13:04

Nghe cũng hợp lí đấy ?!! Nhưng theo linh cảm vẫn cứ thấy sao sao, vì cái bài hcn 3x7 người ta yêu cầu chứng minh trước, sau đó đến bài tổng quát này. Không lẽ lại lập luận đơn giản thế thôi ??!!

Thì có gì sai đâu nhỉ :D ? , chỉ là thu nhỏ lại một trường hợp đơn giản hơn thôi , đề bài thậm chí còn ko ở dạng tổng quát nhất cơ mà :D