Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


ducthai2133

Đăng ký: 03-08-2017
Offline Đăng nhập: 04-07-2018 - 18:28
-----

Bài viết của tôi gửi

Trong chủ đề: Phương trình hàm trên tập rời rạc

04-05-2018 - 22:45

ta thấy $f(m)\equiv c$ với c là hằng số thỏa mãn đề bài
giả sử tồn tại $m,n \epsilon N^{*}, m\neq n$ sao cho $f(m)\neq f(n)$
xét 2 số x,y sao cho : $\left | f(x)-f(y) \right |=min\left | f(m)-f(n) \right |$
giả sử $f(x)>f(y)$ ta có :

$$2f(y)^{3}<f$$^{2}(x)f(y)+f^{2}(y)f(x)<2f(x)^{3}

->\left | f(x)-f(y) \right |>\left | f(x^{2}+y^{2}-f(y)) \right |

suy ra mâu thuẫn 
vậy $f(m)\equiv c$ với c là hằng số là hàm số cần tìm


Trong chủ đề: $f(x+f(y))=f(x)-y\,\forall x,\,y$

01-02-2018 - 21:50

Giả sử hàm f thỏa mãn đề bài
Giả sử tồn tại $y_{1},y_{2}$ để $f(y_{1})=f(y_{2}) -> f(x-f(y_{1}))=f(x-f(y_{2})) -> f(x)-y_{1}=f(x)-y_{2} -> y_{1}=y_{2}$
​Do đó f đơn ánh

Thay y bởi 0 ta có: $f(x+f(0))=f(x) -> f(0)=0$
​Thay x bởi 0 ta có: $f(f(y))=-y$

từ đây $=> f(x+f(y))=f(x)+f(f(y)) -> f(x+y)=f(x)+f(y)$

(bài toán quen thuộc) nên có f(x)=ax với a là hằng số
$=> a(ay+x)=ax-y -> a^{2}=-1$ (vô lý)
​vậy k tồn tại hàm số f 


Trong chủ đề: chứng minh IG vuông góc với BC.

29-01-2018 - 18:35

 IG vuông góc BC. theo đl 4 điểm tức là cần c/m: $IB^{2}-IC^{2}=GB^{2}-GC^{2} <->IM^{2}+MB^{2}-IC^{2}=\frac{2}{3}(m_{b}^{2}-m_{c}^{2}) <->AC^{2}=\frac{2}{3}(m_{b}^{2}-m_{c}^{2})$ 
đẳng thức này đúng => đpcm


Trong chủ đề: $\lim_{n\rightarrow \infty }\frac...

31-12-2017 - 21:43

câu 2 ạ
$\frac{1}{2!}+\frac{2}{3!}+...+\frac{k}{(k+1)!}=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{k-1}{(k+1)!}=1-\frac{1}{(k+1)!}$
$->x_{k}<1 -> lim x_{k}^{n}=0$ $-> lim u_{n}=0$


Trong chủ đề: $\lim_{n\rightarrow \infty }\frac...

31-12-2017 - 21:21

em mới học. làm đc mỗi câu 4 @@
$\frac{1}{x_{n+1}}=\frac{1}{x_{n}(x_{n}+1)}=\frac{1}{x_{n}}-\frac{1}{x_{n}+1} ->\frac{1}{x_{n}+1}=\frac{1}{x_{n}}-\frac{1}{x_{n+1}} ->S_{n}=\frac{1}{x_{1}}-\frac{1}{x_{n}}=2-\frac{1}{x_{n}}$
có:$x_{n+1}-x_{n}=x_{n}^{2}\geq 0 x_{1}=\frac{1}{2}>0$
suy ra dãy tăng. giả sử dãy bị chặn -> có giới hạn hữu hạn khác 0 .gọi giới hạn là a, xét
$a=a^{2}+a->a=0$. vô lý -> $lim x_{n}$= dương vô cực 
=> lim Sn=2